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Abstract

The effect of training status on acute exercise-induced release of pro-inflammatory biomarkers in circulatory system was studied in 10 
moderately trained and seven highly trained athletes. The subjects performed an hour of submaximal bicycle exercise at workload equal 
to ~70% of heart rate reserve. Venous blood samples were collected 15 min before and immediately after the exercise. Intereukin-6, 
tumor necrosis factor-α, and monocyte chemotactic protein-1 response to exercise was similar in moderately trained and highly trained 
athletes (2.5 ± 2.4 vs. 1.0 ± 1.0 pg mL–1; 0.4 ± 0.6 vs. 0.8 ± 0.8 pg mL–1; 50 ± 67 vs. 74 ± 116 pg mL–1, respectively), suggesting that training 
status had no impact on cytokine and monocyte chemotactic protein-1 post-exercise concentrations with this experimental model.
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Abbreviations: CK, creatine kinase; E-selectin, endothelial-leukocyte adhesion molecule-1; HRR, heart rate reserve; HT, highly trained 
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Environmental and Experimental Biology (2012) 10: 107–112 Original Paper

Introduction

Exercise and physical strenuous activity are associated with 
an inflammatory response involving the activation of several 
types of blood cells (Chaar et al. 2011), increase in pro-
inflammatory cytokines (Kinugawa et al. 2003), adhesion 
molecules (Nielsen, Lyberg 2004), chemokines (Peake 
et al. 2005; Smith et al. 2007), myeloperoxidase (MPO) 
(Melanson et al. 2006) and matrix mettaloproteinase-9 
(MMP-9) (Rullman et al. 2009). It has been shown that 
these molecules to some extent are linked in common 
pathways when inflammatory response is generated. For 
example, it has been suggested that interleukin-6 (IL-6) 
exerts modulatory effects on MMP-9 release from skeletal 
muscle cells (Srivastava et al. 2007), fibroblasts (Dasu et al. 
2003), and neutrophils (Chen et al. 2006). Furthermore, 
both IL-6 and tumor necrosis factor-α (TNF-α) induce 
adhesion molecule (Weber et al. 1995; Karatzis 2005), and 
MCP-1 (Biswas et al. 1998; Sobota et al. 2008; Ahmed et 
al. 2009) expression from various tissues. Thus, one of the 

aims of this study was to test whether there are relationships 
between these mediators that are induced by exercise. 

There are many factors that can influence systemic levels 
of cytokines and other blood biomarkers. Exercise-induced 
local muscle damage, bioavailability of carbohydrates, and 
high intensity and long duration of the exercise can be the 
cause of increased blood IL-6 (Helge et al. 2003; MacDonald 
et al. 2003; Nieman et al. 2003; Nieman et al. 2007; Toth et 
al. 2011; Wallberg et al. 2011), TNF-α (Kimura et al. 2001; 
Bernecker et al. 2011) adhesion molecules (Akimoto et al. 
2002; Nielsen, Lyberg 2004), MMP-9 (Danzig et al. 2010; 
Madden et al. 2011), MPO (Morozov et al. 2003), and 
monocyte chemotactic protein-1 (MCP-1) (Suzuki et al. 
2003) concentrations. Studies describing the impact of 
training status on cytokine responses to acute exercise are 
not conclusive. It has been suggested that athletes have an 
attenuated cytokine response to acute exercise (Gokhale et 
al. 2007). However, higher post-exercise responses in IL-6, 
but not in TNF-α, were shown to be positively related to 
performance improvement in highly trained male rowers 
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(Maestu et al. 2010). Finally, an acute exercise-induced 
plasma IL-6 concentration response was shown to remain 
unchanged after 10 weeks of endurance training (Fischer 
et al. 2004). Thus, the second aim of this study was to 
investigate the release of cytokines, e.g. IL-6 and TNF-α, 
adhesion molecules, MMP-9, MPO and MCP-1 during 
submaximal exercise, and to test if there are differences in 
release between moderately and highly trained athletes. 

Materials and methods

Subjects
After approval of experimental procedures by the Ethical 
Committee of the Institute of Experimental and Clinical 
Medicine, University of Latvia, written informed consent 
was obtained from 17 young healthy males (age 21 to 35 
years; Table 1). The subjects were divided in moderately 
trained (MT) and highly trained (HT) athelets based on 
weekly training hours (MT < 7 h; HT > 10 h) and average 
physical load (MT < 2.5 W kg–1 > HT) during the exercise. 
Before the exercise, anthropometric characteristics (weight, 
height etc.) were collected by investigators using standard 
procedures. 

Submaximal exercise protocol
On the experimental day, the subjects arrived at the 
laboratory at 14:00 to 16:00. All subjects performed one bout 
of prolonged submaximal recumbent cycling exercise on a 
veloergometer Ergoselect 600P (Ergoline GmbH, BLTZ, 
Germany) for 1 h. Intensity of 70% of heart rate reserve 
(HRR) was reached during the first 10 min of cycling and 
was maintained during the whole exercise. Target heart rate 
for each subject was calculated by the use of the Karvonen 
formula (Karvonen et al. 1957). Before the exercise, 
maximal heart rate was determined using the Polar Fitness 
Test provided by Polar S810. The Polar Fitness Test is based 
on precise detection of heart rate and heart rate variability 
at rest (Gamelin et al. 2006) and personal information, e.g. 
age, height and weight.  Heart rates were monitored by the 
12 lead Stress Test ECG system (AMEDTEC ECGpro®, 
GmbH, Aue, Germany) throughout the experiment.

Blood sampling and analysis
Venous blood samples for IL-6, TNF-α, MMP-9, MCP-
1, soluble forms of endothelial-leukocyte adhesion 
molecule 1 (sE-selectin), intercellular adhesion molecule-1 
(sICAM-1), vascular cell adhesion molecule (sVCAM-1), 
MPO and standard blood tests (e.g., leukocyte formula) 
were taken 15 min before exercise and immediately after 
the exercise. Resting venous blood samples were taken 
after 3 h fast (subjects were asked to refrain from high fat 
or carbohydrate diet, instead having a balanced meal for 
lunch), and all subjects were asked to refrain from caffeine, 
alcohol, nicotine and medication for 24 h before the blood 
sampling, as well as to avoid physical overload or other 
stressors. 

Blood samples were collected without anticoagulant 
and were allowed to coagulate for 20 to 30 min. Serum 
was separated by centrifugation and all specimens were 
aliquoted, frozen, and stored at –80 °C. Commercially 
available multiplex immunoassay kits (MILLIPLEX 
MAP kit Human Adipocyte 96 Well Plate Assay Cat. No. 
HADCYT-61K; MILLIPLEX MAP kit Human Cytokine/
Chemokine 96-Well Plate Assay Cat. No. MPXHCYTO-
60K; and MILLIPLEX MAP kit Human Cardiovascular 
Disease Panel 1 96 Well Plate Assay Cat. No. HCVD1-67-
AK) were used for quantitative determination of IL-6, IL-8, 
TNF-a, sE-Selectin, sVCAM-1, sICAM-1, MCP-1, MMP-
9 and MPO by a Luminex 200 analyzer (Luminex Corp., 
Austin, TX, USA). 

To avoid inter-assay variation both measurements (15 
min before and after exercise) were analysed in the same 
assay for each subject. Manufacturer provided intra-assay 
coefficients of variation for particular parameters were 7.9% 
(IL-6), 7.3% (TNF-α), 6.8% (MMP-9), 7.9% (sICAM-1), 
6.1% (MCP-1), 11.2% (sE-Selectin), 4.5% (sVCAM-1), and 
12.3% (MPO). Cortisol was measured by an Immulite 2500 
analyzer (Siemens Medical Solutions, USA). 

Other blood tests [haemoglobin, haematocrit, leukocyte 
formula, creatine kinase (CK), lactate dehydrogenase 
(LDH), glucose, lactate] were performed in a certified 
clinical laboratory “E. Gulbja laboratorija”, Riga, Latvia.

Correction of plasma concentrations for blood cells 
and inflammatory molecules were made according to the 
method described previously (Dill, Costill 1974).

Statistical analysis
The levels of measured biomarkers below the detection 
limit were assumed to be the detection limit value. Data 
were analysed by Sigma plot 11.0 software (Systat Software 
Inc., San Jose, CA, USA). Two-way repeated measure 
ANOVA and t-tests were performed as appropriate. Data for 
correlation analysis were expressed as differences between 
absolute values of measured parameters before and after 
exercise (∆) and assessed by Pearson´s correlation. Data 
were expressed as mean ± standard deviation. A value of P 
< 0.05 was considered to be significant.
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Table 1. Subject characteristics in the present study. Values are 
means ± SD. #, significant difference between the groups

Parameter Moderately trained Highly trained
 athletes athletes
Age (years) 26 ± 5 26 ± 2
Body mass index (kg m–2) 22.6 ± 1.7 22.7 ± 2.0
Moderate intensity 5.4  ± 1.6 11.1 ± 4.3#
training (h week–1)
70% HRR (beats min–1) 150 ± 5 149 ± 5
Load (W kg-1) 2.2 ± 0.2 2.7 ± 0.3#



Results

All athletes performed exercise with similar relative 
intensity – 70% of HRR (149 ± 5 beats min–1). Absolute 
workload for the HT group was significantly higher than 
that for the MT group (Table 1, P < 0.05). 

The haemoglobin concentration and haematocrit were 
at higher levels after exercise (Table 2). The subjects were 
not allowed to drink any liquid during the exercise, and thus 
the reduction of blood and subsequently plasma volume 
can be explained by dehydration. Concentrations of blood 
cells are shown in Table 2. All levels of subpopulations of 
leukocytes, except eosinophils and monocytes (P < 0.05), 
increased with exercise across both groups. Both leukocytes 
and neutrophil levels increased significantly in the MT 
group compared to the HT group (P < 0.05). 

There was no indication of skeletal muscle damage, as 
CK, LDH and lactate concentrations did not change with 
exercise (Table 3, P > 0.05). Peak concentrations of cortisol 
were significantly elevated in both groups (P < 0.05, Table 
3). There was a decrease in glucose concentration with 
exercise across both groups (P < 0.05, Table 3). 

There was also an increase in IL-6, TNF-α and MCP-
1 concentrations with exercise across both groups (P < 
0.05, Table 3). When compared to the pre-exercise values 
(Table 3), only the MT group demonstrated an increase in 
the post-exercise IL-6 concentration. In contrast, exercise-
induced increase in TNF-α concentration was seen only in 
the HT group, but not in the MT group (Table 3). There 
were no exercise-induced changes in MMP-9, MPO, sE-
selectin, sICAM-1 and sVCAM-1 concentrations (P > 0.05, 
Table 3). Furthermore, there were no differences in post-
exercise biomarker concentrations between the two groups 
(P > 0.05, Table 3). 

Statistical analysis revealed a significant relationship 
between maximal exercise-induced changes in MMP-9 and 
MPO concentrations (P < 0.05, R = 0.57, n = 17).

Discussion

The present study showed that the elevated levels of IL-6, 
TNF-α and MCP-1 after acute exercise were not associated 
with the training status, as there were no differences 
between submaximal exercise-induced increases in the 
concentration of these mediators in the MT group and in 
the HT group (P > 0.05). This does not, however, rule out 
the possibility that training status might have influenced 
the exercise-induced pro-inflammatory molecule response 
in other experimental models, previously shown by others 
(Gokhale et al. 2007; Maestu et al. 2010). 

Exercise is associated with temporary changes in the 
immune system, e.g. in concentrations of immune cells 
(Lippi et al. 2010), cytokines and chemokines (Suzuki et al. 
2003). Two major mechanisms appear to drive the immune 
response to exercise: neuroendocrine factors and muscle 
damage. In the present study the serum concentrations of 
lactate and the muscle enzymes indicating microtrauma – 
CK and LDH, remained unchanged during submaximal 
exercise. However, the study showed that submaximal 
exercise (1 h) induced leukocytosis mainly by neitrophilia, 
suggesting that neuroendocrine factors, e.g. adrenaline, are 
responsible for the acute exercise effects on lymphocytes 
(Pedersen, Toft 2000). This study also showed that 
submaximal exercise increased cortisol concentration.

Previous studies have shown that exercise-induced 
activation of the secretory function of neutrophils results 
in their degranulation, which leads to an increase in plasma 
concentration of marker neutrophil proteins, including 
MPO (Morozov et al. 2003). The present study showed 
that MPO concentration remained unchanged, suggesting 
that the intensity of the exercise was not high enough to 
elicit muscle damage and subsequent activation of the 
secretory function of neutrophils. It has been suggested 
that leukocytes (Chen et al. 2006) and human skeletal 
muscle (Rullman et al. 2007) express MMPs, including 
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Table 2. Pre-exercise and post-exercise haematological parameters. Values are means ± SD. *, significant difference compared to pre-
exercise. #, significant difference between the groups

Parameter Moderately trained athletes Highly trained athletes Two way repeated measure ANOVA
 Pre-exercise Post-exercise Pre-exercise Post-exercise Main effect Main effect  
 n = 10 n = 10 n = 7 n = 7 of group of exercise
Haemoglobin (nmol L–1) 9.1 ± 0.6 9.5 ± 0.5* 9.0 ± 0.7 9.3 ± 0.8 NS P < 0.001
Haematocrit 45 ± 3 47 ± 2* 45 ± 3 47 ± 3* NS P < 0.001
Leukocytes (× 109 cells L–1) 6.1 ± 1.1 8.3 ± 2.1* 5.0 ± 1.1 5.8 ± 0.7*# P < 0.01 P < 0.001
Neutrophils (× 109 cells L–1) 3.5 ± 1.0 4.9 ± 1.8* 2.8 ± 0.8 3.2 ± 0.5# P < 0.05 P < 0.01
Basophils (× 109 cells L–1) 0.07 ± 0.03 0.08 ± 0.02 0.04 ± 0.02 0.06 ± 0.03* NS P < 0.05
Eosinophils (× 109 cells L–1) 0.19 ± 0.07 0.19 ± 0.09 0.14 ± 0.08 0.16 ± 0.13 NS NS
Monocytes (× 109 cells L–1) 0.50 ± 0.21 0.56 ± 0.22 0.32 ± 0.10 0.33 ± 0.08# P < 0.05 NS
Lymphocytes (× 109 cells L–1) 1.86 ± 0.46 2.54 ± 0.67* 1.67 ± 0.36 2.08 ± 0.32 NS P < 0.001



MMP-9, as a response to local damage of skeletal muscles 
and connective tissue, in order to cleave muscle-specific 
proteins and contribute in extracellular matrix formation, 
remodelling, and regeneration in skeletal muscle (Urso 
et al. 2009). There was no significant change in MMP-
9 concentrations, supporting the notion that exercise 
intensity and duration applied in this study did not elicit 
muscle damage. 

Muscle damage that often is caused by eccentric exercise 
increases IL-6 concentrations during exercise (Bruunsgaard 
et al. 1997; Toft et al. 2002). It has been suggested that IL-6 
released by the contracting muscles may improve skeletal 
muscle energy supply and assist in the maintenance of 
stable blood glucose levels during exercise (Pedersen 
2009). However, the previously obtained results on the 
effect of low carbohydrate bioavailability on IL-6 release 
during exercise are not conclusive. Some studies have 
shown that low plasma glucose and muscle glycogen levels 
increase IL-6 release (Helge et al. 2003; Nieman et al. 2003), 
whereas others did not confirm a relationship between 
IL-6 and carbohydrate turnover (Nieman et al. 2004; Helge 
et al. 2011). It appears that the observed increase in IL-6 
concentration in this study is less connected with muscle 
damage, as there were no changes in CK and LDH levels, 
nor in activation of neutrophil degranulation. In fact, we 
observed a decrease in glucose concentrations and an 
increase in cortisol concentration, confirming activation of 
the hypothalamo-pituitary-adrenal axis in order to ensure 
growing energy demands to the organism (de Vries et al. 
2000). Thus, it is plausible that IL-6 can be released from 
working muscles in order to maintain glucose homeostasis. 

It has been suggested that athletes have an attenuated 
cytokine response to acute exercise (Gokhale et al. 2007). 
This notion was based on the fact that intermittent running 

exercise induced greater magnitude of change in venous 
plasma IL-6 and TNF-α concentrations in non-athletes 
compared to athletes (Gokhale et al. 2007). In contrast, 
significant improvement in acute 6000 meter rowing 
resulted in an increase of post-exercise venous plasma 
IL-6 concentrations in highly trained athletes (Maestu et 
al. 2010). Although there was a tendency for higher post-
exercise IL-6 concentrations in the MT group compared to 
the HT group (P = 0.085), we did not observe a significant 
difference between the two groups. This is in agreement with 
previous findings, which showed that the arterial plasma 
IL-6 response to acute exercise remained unchanged after 
10 weeks of endurance training, despite markedly lower 
skeletal muscle IL-6 mRNA expression (Fischer et al. 2004).

It is well known that IL-6 and TNF-α promote expression 
of adhesion molecules in leukocytes and endothelial cells 
(Weber et al. 1995; Romano et al. 1997; Karatzis 2005; 
Monchanin et al. 2007). Similarly to other studies, our data 
showed a significant increase in the concentration of IL-6 
and TNF-α after submaximal exercise (Kimura et al. 2001; 
Suzuki et al. 2003) but not in adhesion molecules. Both IL-6 
and TNF-α also induce MCP-1 expression from various 
tissue (Biswas et al. 1998; Sobota et al. 2008; Ahmed et al. 
2009). In agreement with other studies (Suzuki et al. 2003; 
Peake et al. 2005), we demonstrated a significant increase in 
MCP-1 concentration after submaximal exercise. Not only 
proinflammatory cytokines, but also increased shear stress 
during exercise activates endothelium and monocytes, both 
of which may release MCP-1.

In conclusion, acute submaximal exercise resulted in 
greater leukocyte counts and increased release of serum 
IL-6, TNF-α and MCP-1. The response of IL-6, TNF-α 
and MCP-1 to exercise in moderately trained athletes was 
similar to that in highly trained athletes, suggesting that 
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Table 3. Pre-exercise and post-exercise blood mediator measures. Values are means ± SD. *, significant difference compared to pre-
exercise; #, significant difference between the groups

Parameter Moderately trained athletes Highly trained athletes Two way repeated measure ANOVA
 Pre-exercise Post-exercise Pre-exercise Post-exercise Main effect Main effect  
 n = 10 n = 10 n = 7 n = 7 of group of exercise
IL-6 (pg mL–1) 1.1 ± 1.3 3.7 ± 3.2* 0.6 ± 0.0 1.6 ± 1.0* NS P < 0.01
TNF-α (pg mL–1) 4.2 ± 1.6 4.6 ± 2.0 4.9 ± 0.7 5.7 ± 0.8* NS P < 0.01
MMP-9 (ng mL–1) 89 ± 54 146 ± 102 98 ± 77 118 ± 41 NS NS
MCP-1 (pg mL–1) 279 ± 137 329 ± 97 273 ± 58 346 ± 137 NS P < 0.05
sE-selectin (ng mL–1) 20 ± 6 20 ± 5 26 ± 6 25 ± 6 NS NS
sICAM-1 (ng mL–1) 97 ± 31 92 ± 23 129 ± 41 117 ± 17# P < 0.05 NS
sVCAM-1 (ng mL–1) 1301 ± 206 1294 ± 192 1296 ± 299 1382 ± 288 NS NS
MPO (ng mL–1) 47 ± 32 45 ± 24 33 ± 21 39 ± 16 NS NS
Creatine kinase (IU L–1) 177 ± 80 181 ± 83 172 ± 84 175 ± 84 NS NS
Lactate dehydrogenase (IU L–1) 314 ± 103 309 ± 105 345 ± 60 359 ± 71 NS NS
Glucose (mmol L–1) 4.8 ± 0.5 4.1 ± 0.3* 5.1 ± 0.9 4.5 ± 0.5 NS P < 0.01
Lactate (mmol L–1) 2.3 ± 1.3 2.6 ± 0.9 1.7 ± 0.3 1.8 ± 0.3# NS NS
Cortisol (nmol L–1) 271 ± 114 458 ± 128* 306 ± 62 546 ± 112* NS P < 0.001



training status had no impact on cytokine and MCP-1 post-
exercise concentrations in this experimental model.

However, this study lacks a control group not performing 
exercise, thus we cannot exclude that along with the exercise 
some of the observed changes could be due to day-to-day 
fluctuations etc. Blood sampling during recovery would 
provide more information about the kinetics of measured 
systemic variables.
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