Mycorrhiza-mediated phosphorus use efficiency in plants

Avinash Rai, Sumit Rai, Amitava Rakshit*

Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Science, Banaras Hindu University, Varanasi, UP-221005, India

*Corresponding author, E-mail: amitavabhu@gmail.com

Abstract

Phosphorus is the second most important plant nutrient after nitrogen that is critical for plant growth, it contributes up to about 0.2% dry mass. It can become deficient in different agro ecological conditions. In soil, it may be present in relatively large amounts, but it is one of the most difficult nutrients for plants to acquire. Much of it is poorly available because of the very low solubility of phosphates of iron, aluminium, and calcium, leading to soil solution concentrations of 10 μM or less and very low mobility. Plants have evolved a range of strategies that increase either soil solution phosphorus uptake capacity or availability in soil. The most exceedingly common of these strategies worldwide is inoculation of plant roots by arbuscular mycorrhizal fungi. Inoculation can promote plant growth by enhancing phosphate uptake from soil, particularly when the supply of phosphorus limits growth.

Key words: arbuscular mycorrhiza, phosphorus use efficiency, plant nutrition.

Introduction

Continuing food production in intensive agriculture systems requires application of adequate amounts of phosphorus (P) on agricultural fields in order to sustain crop yields. On the other hand, there is a great need to improve the efficiency of this finite and non-renewable resource and also reasonable use of P resources in agriculture. Presently, phosphate production is about 133 Mt globally and dominated by four countries: the USA, Russia, Morocco, and China, which collectively utilize about 75% of the world’s phosphate rock (Stewart et al. 2005). Phosphate rock is a finite non-renewable resource and the depletion of phosphate rock reserves is difficult to predict. However, if future consumption continues at the 5-year average mine production rate that occurred between 1997 and 2001, the global peak in phosphorus production is predicted to occur around 2030 (Cordell et al. 2009). The estimated world reserves would last about 90 years, while USA reserves would last only 25 years. However, low P availability limits plant growth on many soils across the world and is a common constraint to agricultural productivity, particularly in developing countries where access to P fertilizers is restricted (Lynch 2007).

In agriculture the excessive use of fertilizers and manures may result in diffuse P losses to surface and groundwater by erosion, surface runoff, and subsurface leaching (Buczko, Kuchenbuch 2007). P fertilizers, derived predominantly from rock phosphate, are used in intensive agricultural systems to overcome soil P deficiency, and thus make a significant contribution to current global food production and security. However, rock phosphate reserves are a finite, non-renewable resource and there is renewed concern for more sustainable and equitable use of P resources in agriculture and a need to improve the efficiency with which P fertilizers are used in different agricultural systems (Bouwman et al. 2009; Cordell et al. 2009; Van Kauwenbergh 2010; Richardson et al. 2011). Total soil P typically ranges from 100 to 2000 mg kg⁻¹ soil, which corresponds to about 350 to 7000 kg ha⁻¹ P on an area basis, although only a small fraction of this P is available for crop uptake (Morel 2002). Removal of P by crops may vary between 3 to 30 kg ha⁻¹; hence crop production will gradually diminish available soil P in the absence of external P application.

Why is phosphorus important?

Phosphorus is the second most important macronutrient, second to nitrogen, that is crucial for the stability and continued existence of life. P is an integral component of ATP and ADP molecules, phospholipids and nucleic acid, which are important in cellular membranes, and provides compounds for photosynthesis in plants and respiration in animals. There are many elementary and principal roles of P in many plant physiological processes, such as photosynthesis, utilization of sugar and starch, and energy transfer. Aside from this vital metabolic role, P is an indispensable structural component of numerous molecules, including nucleic acids, which are the building blocks of genes and chromosomes in the cell nucleus...
and are obligatory for cell division and formation of meristematic tissues (Tisdale et al. 1985). For maximum yield, plants are in need for an ample amount of P from the very early stages of growth (Grant et al. 2005). Therefore, direct availability of P determines plant growth, and limited supply of P results in crop yield loss (Hinsinger 2001). A regular insufficient early-season P supply can limit crop yield and thus P fertilizer is commonly applied to ensure that sufficient P is available to optimize crop production.

Phosphorus dynamics in rhizosphere

The rhizosphere is the critical zone of interactions among plants, soils, and microorganisms. Plant roots can greatly modify the rhizosphere environment through their various physiological activities, particularly regarding exudation of organic compounds such as mucilage, organic acids, phosphatases, and some specific signalling substances, which are key drivers of various rhizospheric processes (Rakshit et al. 2002a). The chemical and biological processes in the rhizosphere not only determine mobilization and acquisition of soil nutrients as well as microbial dynamics, but also control nutrient use efficiency of crops, and thus intensely influence crop productivity (Hinsinger et al. 2009; Richardson et al. 2009a; Wissuwa et al. 2009; Zhang et al. 2010). Due to its low solubility and mobility in soil, P can be rapidly depleted in the rhizosphere by root uptake, resulting in a gradient of P concentration in a radial direction away from the root surface (Rakshit, Bhadoria 2009). In spite of total soil P content usually exceeding the plant requirements, the low mobility of soil P can restrict its availability to plants. Soluble P in the rhizosphere soil solution should be replaced 20 to 50 times per day by P delivery from bulk soil to the rhizosphere to meet plant demand (Marschner 1995). Therefore, P dynamics in the rhizosphere are mainly controlled by plant root growth and function, and are also highly related to physical and chemical properties of soil (Neumann, Romheld 2002). Because of the unique properties of P in soil, such as low solubility, low mobility, and high fixation by the soil matrix, the availability of P to plants is mainly controlled by two key processes:

(i) spatial availability and acquisition of P in terms of plant root architecture as well as mycorrhizal association;

(ii) bioavailability and acquisition of P controlled by rhizosphere chemical and biological processes.

Key role of phosphorus during early crop growth

The significance of sufficient P availability during early crop growth has been reported in different crop species (Grant et al. 2005). It has been reported that enhanced early-season P nutrition in maize increased dry matter at early stages partitioned to the grain at later development stages (Parewa et al. 2010). Likewise, in wheat and barley, P supply during earlier growth had superior effect on final grain yield than P supply in later stages (Smith et al. 2011). Plenet et al. (2000) reported a greater difference in dry matter accumulation of maize under P deficiency during early stages of growth. The above ground dry matter accumulation was observed to be severely reduced (up to 60%) during early stages of maize growth, while there were only slight differences on dry matter accumulation at harvest and grain yield. The effect of early P deficiency on decline in shoot growth occurs because of slight stimulation of root growth (Mollier, Pellerin 1999). The initial reduction in growth related to P deficiency has an ultimate effect on the final crop yield, which is experienced by the crop throughout the remaining of the growing period.

Phosphorus use efficiency and plant growth

Nutrient efficiency is mainly considered as dry matter produced per unit nutrient element concentration in dry matter (Godwin, Blair 1991), which can also be termed as the internal nutrient requirement. However, there is much controversy concerning the concept of nutrient use efficiency, as it can be defined in different ways. Considering yield parameters, efficiency with regard to a specific mineral nutrient, is the capability of any species or cultivar of producing dry matter, in a soil limiting in that particular nutrient element. (Buso, Bliss 1988). Agronomic efficiency is defined as the total harvestable amount per unit of growth limiting nutrient element applied in the soil (Caradus, Woodfield 1990). External efficiency is the sum of nutrient content in soil primarily taken up by plants to produce a certain fraction of whole dry matter produced (Fohse et al. 1988). Some researchers have used the term nutrient efficiency ratio, which is calculated as the reciprocal of the nutrient concentration in the whole plant (Gourley et al. 1994). Other workers have used the term nutrient uptake efficiency (Buso, Bliss 1988). Uptake efficiency is defined in terms of total uptake per plant or specific uptake per unit root length (Marschner 1995).

Internal P management, like the effects of P stress on yield components and the way the plant distributes the acquired P among shoot organs, varies widely between genotypes (Sattelmacher et al. 1994). However, even greater genetic variation has been found in traits for acquisition of nutrients by roots (Lynch, Beebe 1995). Root morphological characters, such as root length, surface area, root radius, and density of root hairs, are regarded as having primary importance for P-uptake efficiency (Sattelmacher et al. 1994). Root morphology is determined not only by genetic but also by environmental factors, including soil P availability (Hajabbasi, Schumacher 1994). Plasticity of the root system can be exploited for developing P efficient cultivars. Nuruzzaman et al. (2005) hypothesized that P-acquisition efficiency in plant species varies with their rhizosphere volume and chemistry.
The second component of uptake efficiency is root physiological activity such as differing uptake kinetics, i.e. I_{max}, K_m, and C_{min}, which result in different nutrient uptake rates per unit root and time (Steingrobe, Classen 2000). Plants differ in P-absorbing capacity of their roots, and even inter-specific variations have been found (Nielsen, Barber 1978; Kranzitz et al. 1991). The parameter found to differ most among genotypes is the maximum net influx, I_{max} (Claassen 1990) and plants are considered efficient when I_{max} is high. However, when soil P availability is low, the rate limiting step in P uptake is its transport to the root surface and a high I_{max} is useless (Jungk, Claassen 1997). Other mechanisms or traits that affect specific uptake efficiency include chemical mobilization of nutrients by root exudates, induced pH changes in the rhizosphere and AM associations (Marschner 1995). Nutrient-efficient species possess either morphological or physiological characteristics that facilitate higher nutrient uptake and/or better nutrient utilization, or are able to chemically influence the rhizosphere with a consequent improved nutrient availability (Sattelmacher et al. 1994). Bhadoria et al. (2001) found high P efficiency of groundnut in the field resulted from a high P influx, present even at low P concentrations in soil solution. In contrast, Bhadoria et al. (2004) found that groundnut is incapable of obtaining high P influx in nutrient solution at low P concentration. This indicates that some other mechanism must come into play to increase P influx under field conditions, for example, chemical mobilization of P bound to the soil solid by root exudates (Ae et al. 1990), or cell wall components (Ae et al. 2001) or contribution of AM (Marschner 1995).

When a plant is P deficient, two factors control plant growth. One is the rate of P absorption or P influx. The other is the ratio of dry mass increase to P content increase, which can be thought of as the efficiency with which P is used to produce dry matter, the P-use efficiency (PUE; Haynes et al. 1991; Koide 1991). The PUE is expected to vary according to tissue type. Seeds, for example, often have lower PUE than stems, because seeds require more P to produce a given dry mass than do stems. Variation in PUE also occurs among plant species (Christie, Moorby 1975; Haynes et al. 1991), and as a consequence of variation in P availability and mycorrhizal colonization (Haynes et al. 1991; Koide, 1991).

Factors affecting phosphorus use efficiency

The two following factors control the rate of P absorption or P influx into roots.

(i) The quantity of various nutrients, available for plant, including C, N, P etc., determine the capability of the root surface area (root morphology) to absorb P from the soil, and controls P absorption by the plant, all else being equal. The more P held by the plant (its internal P reserve; Bloom et al. 1985), the more can be used to produce root surface area in order to acquire P from the soil. Therefore, the most critical of these nutrient elements under the control of the plant is P itself.

(ii) The efficiency with which the internal P reserve is used to absorb P from the soil. There is no immediate negative consequence to inefficient use of a non-limiting resource, simply because it is available in non-limiting amounts.

However, immediate benefit is a consequence of more efficient use of plant P, because P is the limiting resource. Koide et al. (1999) defined the efficiency with which the internal P reserve is used to absorb P from the soil as the phosphorus efficiency index (PEI). The PEI is analogous to the 'efficiency index of dry weight production' (Blackman 1919), which determines how efficiently the plant's current dry mass is used to gain more mass. It can often be expressed as the relative growth rate. Similarly, PEI is defined as a measure of how efficiently the plant's internal P reserve is used to gain more P (Hunt 1990). Thus, phosphorus influx into roots is a function of both plant P content and PEI, and accordingly, growth rate is a function of the PUE, the P content and the PEI.

Mycorrhiza plays a role in phosphorus transport

P is critical for plant growth and makes up about 0.2% of dry mass, but it is one of the most difficult nutrients for plants to acquire. In soil, it may be present in relatively large amounts, but much of it is poorly available because of the very low solubility of phosphates of iron, aluminium, and calcium, leading to soil solution concentrations of 10 mM or less and very low mobility (Ryan, Graham 2002; Ryan et al. 2005). In consequence, uptake of orthophosphate (P) by root epidermal cells including root hairs leads to lower P_i concentrations in the rhizosphere, as replacement does not keep pace with uptake. Plants and fungi take up P as negatively charged P ions ($H_2PO_4^-$), which possess additional problems, because the concentration in cells is about 1 000-fold higher than in the soil solution and the cell membrane has an inside-negative electric potential. P uptake, therefore, requires metabolic energy and involves high-affinity transporter proteins (Bucher 2007).

Accordingly, plants have evolved a range of strategies that increase either P_i uptake capacity or availability of P_i in soil. The most widespread of these strategies worldwide is AM symbiosis (Cheng et al. 2011; Lambers et al. 2011). AM symbioses are widespread in the plant kingdom and contribute significantly to plant P nutrition and growth in natural ecosystems. Association of AM may improve P uptake from soil (Smith et al. 2011). AM fungi are ecologically significant because they form relationships in and on the roots of a host plant in a symbiotic association so that mycorrhizas, not roots, are the chief organs of nutrient uptake by plants (Bagayoko et al. 2000). Mycorrhizas form a critical link between the aboveground plant and the soil by
influencing plant nutrient cycling (Rakshit et al. 2002a) and soil structure (Korb et al. 2003). AM fungi colonize most agricultural species (exceptions include *Brassica* spp. and *Lupinus* spp.) and have an important role in the P nutrition of many farming systems worldwide, especially on soils with low available P (Smith, Smith 2011; Smith et al. 2011). However, the advantages of increased P-uptake and growth over comparative, non-mycorrhizal plants at low P diminish with increasing soil P availability (Rakshit et al. 2002a; Rakshit et al. 2002b). There is often little advantage in growth at soil P levels necessary for near maximum plant growth rates in intensive agricultural systems (Simpson et al. 2011). In some instances, growth rates of AM plants are at high soil P than those of comparative nonmycorrhizal plants (Johnson et al. 1997). The ability of AM to enhance host-plant uptake of relatively immobile nutrients, in particular P and Zn (Balakrishnan, Subramanian 2012), and their requirement for up to 20% of host phosphatase for establishment and maintenance, is well accepted (Graham 2000; Subramanian et al. 2008; Subramanian et al. 2009). It has generally been recognized that the effect of AM symbiosis associated with host plants is beneficial, because growth and development of the plants are stimulated, drought tolerance increases and the association has a high potential for agriculture (Rakshit et al. 2002b) and land reclamation (Liu, Li 2000). As a result of these characteristics, AM fungi have been expected to promote plant growth in degraded and denuded lands (Yokoyama et al. 2005; Rakshit et al. 2008). The most publicized benefit of mycorrhiza is the improved growth rate, often shown in experimental comparisons of mycorrhizal and non-mycorrhizal plants through its inoculation (Subramanian, Charest 2007). Plant benefits with this association under nutrient-poor conditions increasing phosphorus uptake by the host plant (Koide 1991). Miller et al. (1995) and coworkers reported an interesting case where disturbance of an arable, no-till soil resulted in reduced AM development and subsequently less absorption of P by seedlings of maize in the field. Neumann and George (2004) concluded that mycorrhizal colonization seems to increase P uptake from dry soil.

Plants grown at high P in the presence of mycorrhizae accumulated only 88% of biomass of plants grown at high P in absence of mycorrhizae, indicating that mycorrhizae can reduce plant growth when not contributing to the symbiosis. Although a beneficial role of mycorrhizal symbiosis has been frequently observed, there have been cases reported where mycorrhizal inoculation has led to a decrease in plant productivity, particularly in AM plants (Jifon et al. 2002; Schroeder, Janos 2004). The results of Correa et al. (2006) showed that plants react differently to ectomycorrhiza formation, depending on their stage of development, leaf area, their initial nutritional status, and the amount of nitrogen supplied.

Plant response to AM inoculation is extremely variable both among and within species. Inoculation by AM have a wide range of effects on different plant species in relation to P nutrition in different situations. The effectiveness of AM fungi *Gigaspora margarita* in increasing plant growth was observed to be closely correlated with colonised root length (Rohyadi et al. 2004). Generally, the development of AM inoculation seemed to follow a three phase growth curve i.e. a lag phase, a phase of rapid growth and a phase of constancy or plateau phase with increase age of plants (Saif 1986).

Upon mycorrhizal inoculation, increase in shoot growth is generally lower at the initial stage, and then increases rapidly with age of plants (Bethlenfalvay, Linderman 1992). Ma et al. (2006) found that root inoculation and the number of proliferating spores increased with increasing levels of phosphorus. Mycorrhizal plants deplete phosphate to lower levels and to a much larger soil volume per unit root length than nonmycorrhizal plants (Allen 1991). Influx of P in roots colonized by AM fungi can be three to five times that in nonmycorrhizal roots (Smith, Read 1997). Jakobsen (1986) reported a two to three times increase in influx of P to roots of pea and clover plants, respectively, due to the effect of mycorrhiza.

Mechanism of P uptake by mycorrhiza: increased surface area

The external hyphae of AM extend from the root surface to the soil beyond the P depletion zone and have access to a greater volume of undepleted soil than the root alone (Jakobsen 1986; Lambers 2006; Lambers et al. 2011). Some hyphae may extend more than 10 cm from root surfaces (Jakobsen et al. 2005) which is further than most root hairs. Also, the small diameter of hyphae (20 to 50 µm) allows access to soil pores that cannot be explored by roots. Therefore, a root system forming a mycorrhizal network will have a greater effective surface area (Lambers et al. 2008) for absorbing nutrients and exploring a greater volume of soil than nonmycorrhizal roots. In one study, the volume was calculated to be at least 100 times greater with mycorrhizal association than in its absence (Sieverding 1991). Moreover, mycorrhizal colonization may induce formation of lateral roots or increase root branching (Lynch 2007; Rakshit, Bhadoria 2009), further increasing the volume of soil explored.

Mycorrhizal plants can absorb more P at lower concentration in the soil solution than nonmycorrhizal plants (Lynch, Brown 2001; Rakshit, Bhadoria 2009). One possible explanation is that mycorrhizal hyphae have a higher affinity (lower K_m) for P than roots (Zhu et al. 2010). But this phenomenon is not necessary for explaining improved P uptake by mycorrhizal roots. Barber (1984) explained that there is a very limited concentration gradient around hyphae (i.e., minimal depletion zone) since the radius of hyphae is much smaller than that of roots plus root hairs (0.005 mm versus 0.15 mm). Hence, P concentration
in soil solution around hyphae is always higher than in the P depletion zone around roots, and hyphae may absorb more P in low P soil even without having a higher affinity for P.

Mechanism of P uptake by mycorrhiza: biochemical modification of rhizosphere

Several researchers worldwide proposed rhizospheric microbial inoculants as integral and indispensable components of integrated nutrient management systems (Adesemoye, Kloeper 2009; Harvey et al. 2009; Khan et al. 2010), particularly regarding their ability to increase the availability of P for crops (Kucey, Leggett 1989; Bowen, Rovira 1999, Jakobsen et al. 2005). Mycorrhizae play a considerable role in alteration of the biochemical environment (Raskhit, Bhadaria 2009) and in the physiological characteristics of the rhizosphere, which can improve P accessibility in the rhizosphere (Richardson 1994; Whitelaw 2000; Jakobsen et al. 2005; Harvey et al. 2009; Richardson et al. 2009a; Khan et al. 2010; Richardson, Simpson, 2011). Mycorrhiza was shown to induce increased proton efflux or pCO₂ activity around the rhizosphere, lowering pH to around 6.3 (Rigou, Mignard 1994) resulting in greater solubilization of P (Kucey, Leggett 1989; Bowen, Rovira 1999), predominantly in neutral to calcareous soils (Bago, Azcon-Aguilar 1997). Citric acid and siderophores produced by mycorrhizae can enhance bioavailability of P supply in the soil more specifically in the case of Fe- or Al-bound P in acidic soils (Haselwanter 1995; Cress et al. 1986; Richardson, Simpson 2011). Furthermore, mycorrhizae has been reported to produce alkaline phosphatases, which can mobilize P from organic sources, and a low rate of this can have a long-term impact on mobilizing phosphate (Tarafdar, Marschner 1994). The hydrolysis of organic P by extracellular phosphatases secreted by mycorrhizae, excretion of protons, hydroxyls and organic anions (Raskhit, Bhadaria 2007), and modifications of the redox potential around mycelium and roots of the mycorrhizal association might also hasten the release of P ions from soil to solution (Hinsinger 2001). Alteration in rhizospheric pH is also associated with the soil-buffering capacity, microbial activities, and plant genotypes. (Raghothama, 1999; Hinsinger et al. 2003; Vance et al. 2003). These different mechanisms play a significant role, especially in response to phosphorus mobilization (Lambers et al. 2011).

Organic anion exudation in the rhizospheric environment plays a vital role in the bioavailability of soil P (Hinsinger 2001; Roelofs et al. 2001). Mycorrhiza releases organic anions such as citrate, malate and oxalate, which can occupy sorption sites that might otherwise mobilize P, or replace P in the sparingly soluble complexes with aluminium, iron and calcium (Richardson et al. 2011). Thus it can enhance availability of P into soil solution (Khademi et al. 2009; 2010; Richardson et al. 2011), which might be accountable for the greater release of organic forms of soil P (Wei et al. 2010). Mycorrhiza is also reported to produce carboxylates, which influence ligand exchange, ligand-promoted dissolution of P-bearing minerals such as Fe/Al oxides, and thus having a significant contribution in P mobilization However, carboxylate induces alteration in surface charges on clays, and complexation of P with Al/Fe oxides have not been much discussed yet by researchers (Neumann et al. 1999; Wang et al. 2010). It has been found that the Al-activated malate transporter mediates malate exudation (Hoekenga et al. 2006) and that the extrusion transporter mediates citrate exudation (Magalhaes et al. 2007), and both may confer resistance to complexation of P with Al/Fe.

Role of mycorrhiza in crops

AM fungi are associated with improved growth of many plant species due to increased nutrient uptake, production of growth promoting substances, tolerance to drought, salinity and transplant shock and synergistic interaction with other beneficial soil microorganisms such as N-fixers and P-solubilizer. Symbiotic association of plant roots with VA-fungi often result in enhanced growth because of increased acquisition of P and other low mobility mineral nutrients (Table 1). Advantages of AM symbiosis over the non-mycorrhizal state of the same plant genotype are inextricably associated with root architecture, in that plants with extensive, branched root systems, very fine roots and long root hairs tend to show relatively low improvement in growth when they are mycorrhizal, even in low P soils (Condron 2004; Cherr et al. 2006; Fageria 2007; Simpson et al. 2011), AM symbioses have a mixed reputation worldwide as a means of improving crop growth, particularly under high soil P conditions. The reason for this is the lack of obvious nutritional benefits to the crop, or a apparent ‘parasitic’ effect that constrains crop yield under high soil P conditions. Consequently, it has been suggested that there may be benefits to production by managing crop rotations to reduce AM fungi (Richardson et al. 2011). From a P-use efficiency perspective, the challenge is to increase the utilization of organic P for plant production, either as a consequence of modified agronomic practices (Simpson et al. 2011) or by using plants or microorganisms capable of enhancing the mineralization of organic P (Richardson et al. 2009a; Richardson et al. 2009b).

Conclusions

Scientific evidence gathered so far in this review indicates that mycorrhiza is likely to have a significant impact on plant nutrient uptake, particularly phosphorus, its allocation and cycling. However, the responses of plant species richness and plant production to P-limitation can only be understood when the interactions of this limitation
Table 1. Phosphorus-uptake responses of some agricultural crops to mycorrhizal inoculation (indigenous/externally added)

<table>
<thead>
<tr>
<th>Crop</th>
<th>Mycorrhizal inoculation</th>
<th>Response</th>
<th>Experimental set up</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize</td>
<td>Glomus intraradices</td>
<td>Grain yield increased by 41%</td>
<td>Pot / field experiment with red sandy loam soil</td>
<td>Ananthi et al. 2011</td>
</tr>
<tr>
<td>Wheat</td>
<td>Glomus mosseae, Glomus deserticola, Gigaspora gergaria</td>
<td>Shoot P content increased by 6 to 54% with 79.5 to 109% dependency. G. mosseae had the largest effect on plant growth and other physiological parameters</td>
<td>Efficiency of AM fungi in enhancing growth and mineral content of wheat plants in saline soil</td>
<td>Abdel-Fattah, Asrar 2012</td>
</tr>
<tr>
<td>Maize</td>
<td>Glomus intraradices</td>
<td>Recorded 9% better growth and yield attributes and grain</td>
<td>Influence of iron application and AM inoculation in calcareous sandy clay loam soil (pH 7.58)</td>
<td>Archana et al. 2012</td>
</tr>
<tr>
<td>Green gram</td>
<td>Glomus fasiculatum, Glomus mosseae</td>
<td>Grain yield (by 14.8 and 13.5%) and grain P content was significantly increased (by 21.95 and 20.97%), respectively</td>
<td>Field experiment in typical alfisols with silty clayloam, containing different levels of N, AM and Rhizobium</td>
<td>Bhat et al. 2011</td>
</tr>
<tr>
<td>Kinnow</td>
<td>Glomus manihotis, Glomus mosseae, Gigaspora gigantia</td>
<td>Increased foliar P concentration by 43.21, 12.35 and 111.52%, respectively</td>
<td>Field study</td>
<td>Shamshiri et al. 2012</td>
</tr>
<tr>
<td>Rice and mung bean</td>
<td>Glomus caledonium</td>
<td>Improved formation of mycorrhizas by intercropping increased total P uptake by 57% in rice, and total P and N acquisition by 65 and 64%, respectively, in mung bean</td>
<td>Method of plastic film and nylon net partition and tracing 15N transfer between the intercropped upland rice and mung bean to allow penetration with and without a barrier of nylon net of fungal hyphae, assayed the effect on nutrient acquisition and biomass</td>
<td>Li et al. 2009</td>
</tr>
<tr>
<td>Maize, sorghum, millet, mash bean, mung bean</td>
<td>Indigenous mycorrhiza</td>
<td>Crops showed 3 to 101% increase in shoot dry matter with inoculation of AM fungi. Significant increase of plant P uptake for 63, 80, 75, 166 and 50% for the respective crops</td>
<td>Pot experiment with Tarnab soil, sandy loam, mixed hyperthermic UdicHaplustepts containing low P concentration for 70 days</td>
<td>Sharif et al. 2011</td>
</tr>
<tr>
<td>Wheat</td>
<td>Glomus mossae</td>
<td>Grain yield increased by 25.9%</td>
<td>Field experiment with seed priming and soil inoculation</td>
<td>Kumar et al. 2011a</td>
</tr>
<tr>
<td>Strawberry</td>
<td>Glomus clarum, Glomus caledonium</td>
<td>Fruit yield increased by 17.8%</td>
<td>Soilless substrate was drip irrigated with different P concentrations and inoculated with AM in unheated greenhouse</td>
<td>Cekic,Yilmaz 2011</td>
</tr>
<tr>
<td>Maize</td>
<td>Glomus mossae</td>
<td>Seed yield increased by 21.53%</td>
<td>Field experiment with sandy loam sand</td>
<td>Mobasser, Moradgholi 2012</td>
</tr>
<tr>
<td>Cape gooseberry</td>
<td>Glomus sp., Acaulospora sp., Entrophospora sp.</td>
<td>AM fungi alleviated and compensated for the growth limitations imposed by saline conditions</td>
<td>Field experiment with clay loam sand with pH 5.59 and EC 5.65 dS m⁻¹</td>
<td>Miranda et al. 2011</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>Gigaspora rosea, Glomus intraradices + Gigaspora rosea, Glomus etunicatum + Glomus intraradices</td>
<td>Water use efficiency, root and shoot dry weight significantly increased. Maximum water use efficiency, shoot and root weight was achieved with dual inoculation</td>
<td>Pot experiment with sterilized soil at two water regimes</td>
<td>Khan et al. 2007</td>
</tr>
<tr>
<td>Crop</td>
<td>Mycorrhizal inoculation</td>
<td>Response</td>
<td>Experimental set up</td>
<td>Reference</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Beet, lettuce, velvetleaf</td>
<td>Glomus intraradices</td>
<td>Increased P content by 150% in lettuce and 160% in velvetleaf. No significant effect on PEI and P content in beet. Significant decrease in PUE for lettuce, no effect for velvetleaf and beet</td>
<td>Pot experiment with soil / sand mixture</td>
<td>Koide et al. 2000</td>
</tr>
<tr>
<td>Peach</td>
<td>Glomus mosseae, Glomus versiforme, Paraglomus occultum</td>
<td>Plant height, stem diameter, shoot, root and total dry weight significantly increased by 30.3, 17.2, 34.4, 64.5 and 45.4%, respectively with inoculation of G. mosseae, 11.8, 10.9, 19.4, 31.2% and 23.5% with G. versiforme, and 6.4, 1.9, 12.1, 24.8 and 16.8% with P. occultum. Inoculation elevated K, Mg, Fe and Zn content in leaves and roots, Ca content in leaves, Cu and Mn content in roots</td>
<td>Pot experiment with autoclaved substrate</td>
<td>Wu et al. 2011</td>
</tr>
<tr>
<td>Wheat</td>
<td>Glomus fasciculatum</td>
<td>Significant increased grain yield by 21.6, 13.3, and 17.5% for AM, Azotobacter, and AM + Azotobacter, respectively</td>
<td>Field study using seed inoculation with AM and Azotobacter at different levels of irrigation</td>
<td>Hasanpour et al. 2012</td>
</tr>
<tr>
<td>Maize</td>
<td>–</td>
<td>Grain yield increased by 18.1%</td>
<td>Experimental soil calcareous with sandy loam texture (pH 7.58)</td>
<td>Amanullah et al. 2011</td>
</tr>
<tr>
<td>Chickpea, barley</td>
<td>Glomus spp. (G. intraradices, G. mosseae, G. claroideum, G. microagregatum, G. caledonium, G. etunicatum)</td>
<td>Positive effects on nutrient status of chickpea and barley grown under moderate soil nutrient supply. Better response in chickpea in respect to nutrient concentration, and in barley in respect to dry matter accumulation. No effect on growth</td>
<td>Field with a low soil availability of P</td>
<td>Farzaneh et al. 2011</td>
</tr>
<tr>
<td>Jatropha curcas</td>
<td>Glomus aggregatum, Glomus macrocarpum, Glomus mosseae, Glomus fasciculatum, Glomus intraradices, Glomus etunicatum, Acaulospora scrobiculata, Acaulospora delicate, Gigaspora margarita, Scutellospora pellucida</td>
<td>Low soil P content enhanced AM spore population and inoculation in roots. Highly significant dependence on plant growth</td>
<td>Field study with two different soil types, black cotton soil (pH 7.5) and red-murumy soil (pH 6.1)</td>
<td>Jamaluddin, Singh 2006</td>
</tr>
<tr>
<td>Pearl millet, sorghum, cow pea</td>
<td>Glomus mosseae</td>
<td>AM application increased P concentration in shoots by 170%</td>
<td>Experiments in acid sandy soils (pH 5.6) deficient in P</td>
<td>Bagayoko et al. 2000</td>
</tr>
</tbody>
</table>
with multiple other abiotic resources and biotic interactions are taken into consideration. To increase sustainability of agriculture, plant adaptations to low P concentrations in soils can be attained by using mycorrhiza. With rising prices for P fertilizers, the use of mycorrhiza and the breeding of cultivars with adapted root systems or exudation strategies are possible tools in maintaining or increasing productivity.

References

Smith S.E., Smith F.A. 2011. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to

Received 29 May 2013; received in revised form 29 June 2013; accepted 10 July 2013