Cumulative effect of potassium and gibberellic acid on growth, biochemical attributes and productivity of F1 hybrid cucumber

Priyanka Pal¹, Kuldeep Yadav¹, Krishan Kumar², Narender Singh¹*¹

¹Department of Botany, Kurukshetra University, Kurukshetra, Haryana, India
²Centre of Excellence for Vegetables Indo-Israel, Gharaunda (Karnal), Haryana, India

*Corresponding author, E-mail: nsheorankukbot11@gmail.com, nsheorankuk@yahoo.com

Abstract

Cucumis sativus L. is an important fruit vegetable with great economic potential. A study was carried out to evaluate the potential of exogenously applied potassium nitrate [1.0 (K₁), 2.5 (K₂), 5 (K₃) g L⁻¹] and gibberellic acid [0.005 (G₁), 0.01 (G₂), 0.015 (G₃) g L⁻¹] in combination on growth, development and yield of the F1 hybrid cucumber cv. 'KUK-9' under protected cultivation. Growth and physiological parameters like vine length, fresh weight, dry weight, number of branches, number of leaves, growth rate, biomass duration, chlorophyll and mineral content were observed after 70 days. Overall results suggest that all the combination treatments showed beneficial effects over the control, but foliar application of G₂K₂ had maximum effect on growth and development of plants. Total yield and fruit quality were also significantly higher in G₂K₂ treatment than in other treatments. Foliar application of potassium and gibberellic acid may be effective to maximize cucumber growth, physiological status and yield parameters.

Key words: Cucumis sativus, gibberellic acid, growth, potassium, yield.

Abbreviations: AGR, absolute growth rate; BMD, biomass duration; GA₃, gibberellic acid; K, potassium; RGR, relative growth rate.

Introduction

Cucumis sativus L. (Cucurbitaceae) is an important fruit vegetable with great economic potential. It is an excellent source of minerals and vitamins for the human body with a very low caloric value (Wang et al. 1997).

Endogenous plant growth regulators are known to control vital physiological and biochemical processes of plants (Sharma et al. 2013). Exogenous application of plant growth regulators is a well-recognized strategy to enhance yield, improve quality and to protect plants from adverse effects of the environment (Dashora, Jain 1994). Foliar spray is an emerging method for crop fertilization and is usually preferred over root fertilization because of its higher efficiency and lower cost (Nasiri et al. 2010). Generally, a balanced supply of nutrients in optimal concentration is essential for optimum yield and fruit quality in different vegetables (Akhter et al. 2010).

Potassium (K) is one of the essential plant mineral nutrients and its availability is associated with photosynthesis, enzyme activation, cell turgor maintenance and ion homeostasis (Fawzy et al. 2007). Gibberellic acid (GA₃) is a potent plant growth regulator, reported to stimulate vegetative growth, flowering and fruiting in many agricultural and horticultural crops (Paroussi et al. 2002; Elseše et al. 2005).

Vegetables are a good source of minerals, vitamins and dietary fibre and contribute to preventing micronutrient deficiencies and promoting healthy bowel function (Hollingsworth 1981). Therefore, efforts are being made to use methods of applying nutrients for increasing yield. Despite various studies carried out on the soil and plant nutrition, only a few studies have been conducted on parthenocarpic vegetables. Keeping the above in mind, the aim of the present study was to investigate the effects of foliar application of K and GA₃ on growth and yield of F1 hybrid cucumber cv. ‘KUK-9’.

Materials and methods

Site and treatments

The experiment was conducted in net house at the Centre of Excellence for Vegetables Indo-Israel, Gharaunda (Karnal) at N 29°32’ E 76°59’ from September to December 2015. Normal temperatures during this period are 17 to 27 °C (night) and 32 to 34 °C (day). The F1 hybrid parthenocarpic cucumber cv. ‘KUK-9’ obtained from the Indo-Israel Centre was used. The physical and chemical properties of the soil up to 30 cm depth at the experimental site were 82.20% sand, 11.19% clay, 6.11% silt, pH 7.7, 146.50 kg ha⁻¹ of K, 15.23 kg ha⁻¹ of P and 12.3% moisture.

Treatments included foliar application of four
concentrations of gibberellic acid [0 (G₀), 0.005 (G_{0.005}), 0.01 (G_{0.01}), 0.015 (G_{0.015}) g L⁻¹] together with four concentrations of potassium [0 (K₀), 1.0 (K₁), 2.5 (K_{2.5}) and 5.0 (K_{5.0}) g L⁻¹] in a form of potassium nitrate. Four different treatment combinations were used in the experiment: G₀K₀ (control), G₀K₁, G_{0.005}K₂ and G_{0.015}K₅. K and GA₃ were prepared with distilled water and applied to foliage with a power spray/ knap sack spray pump until complete wetting. Treatments were applied in the morning with a single day interval. All the other agriculture practices i.e., irrigation, hoeing and weeding were carried out throughout the growing season. Data on vine length, number of leaves, number of branches, root length, fresh and dry weight, absolute growth rate (AGR), relative growth rate (RGR), biomass duration (BMD), leaf chlorophyll concentration, carotenoid concentration, sodium, magnesium and calcium concentration and fruit yield (fruit set %, fresh and dry weight) were recorded at final harvest (70 days).

Growth analysis

Vine length and root length were measured from the cotyledonary node to the growing tip. Total numbers of branches and leaves originating from the main stem of each plant were counted. Dry weight per plant was determined after plants were removed from soil. The plants were dried in a forced air oven at 70 °C until a constant weight was obtained. AGR (dry matter production per unit time) was calculated using the formula of Radford (1967). RGR is the rate of increase in dry weight per unit dry weight already accumulated and calculated using the formula of Blackman (1919). BMD, the magnitude and duration of a crop time, was calculated using the formula of Sestak et al. (1971).

Biochemical analysis

Among biochemical parameters, leaf chlorophyll concentration was measured as described by Arnon (1949). Leaf carotenoid concentration was measured using the method of Lichtenthaler and Welburn (1983). Leaves were dried to a constant weight at 70 °C and ground to form a powder such that it could pass through a 1.0 mm sieve. Well-mixed, dried plant samples were weighed (0.5 g) and dissolved in 5 mL of 2N HCl for determination of Mg and Ca. Concentrations were determined by atomic absorption spectrophotometer (model 2380, Perkin-Elmer, US) using the method of AOAC (1990). Sodium content was assayed using a flame spectrometer.

Statistical analysis

All experiments were conducted with a minimum of five replicates per treatment and were repeated three times. The data were analyzed statistically using one-way analysis of variance (ANOVA) and the differences contrasted using a Duncan’s multiple range test at P ≤ 0.05. All statistical analyses were performed using the SPSS (version 11.5) program.

Results

Exogenous application of K and GA₃ on parthenocarpic cucumber increased all measured growth parameters, like

Table 3. Effect of foliar spray of potassium and gibberellic acid on growth parameters of parthenocarpic cucumber cv. ‘KUK-9’. G, GA, 0.005 g L⁻¹; G, GA, 0.01 g L⁻¹; G, GA, 0.015 g L⁻¹; K, K 1.0 g L⁻¹; K, K 2.5 g L⁻¹; K, K 5.0 g L⁻¹. Each value is a mean of five replicates, values in column followed by same letter are not significantly different.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Absolute growth rate (g per day per plant)</th>
<th>Relative growth rate (g g⁻¹ per day per plant)</th>
<th>Biomass duration (g days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.120c</td>
<td>0.031cd</td>
<td>833.4d</td>
</tr>
<tr>
<td>G,K</td>
<td>0.340b</td>
<td>0.035b</td>
<td>924.5b</td>
</tr>
<tr>
<td>G,K</td>
<td>0.390a</td>
<td>0.037a</td>
<td>936.2a</td>
</tr>
<tr>
<td>G,K</td>
<td>0.316b</td>
<td>0.033b</td>
<td>902.7c</td>
</tr>
<tr>
<td>LSD (P ≤ 0.05)</td>
<td>0.0331</td>
<td>0.0042</td>
<td>0.215</td>
</tr>
<tr>
<td>ANOVA (F₁,₈)</td>
<td>136.541**</td>
<td>3.244**</td>
<td>4.763**</td>
</tr>
</tbody>
</table>

Discussion

The results revealed that the exogenous application of different combinations of K and GA had variable effect on different growth and morphological parameters of parthenocarpic cucumber. The observed effect can be attributed to increased cell division and cell elongation induced by the foliar spray of GA3 and K (Shah et al. 2006). The results are in agreement with earlier findings of Karakurt et al. (2009), Roy and Nasiruddin (2011) and Kumar et al. (2014) in different crops. Mazumdar (2013) also noticed an increase in total plant weight using foliar application of K and GA3 in cabbage. Plant growth regulators promote DNA, RNA and protein synthesis resulting in increased biomass in different parts of the plant. They also regulate nutrient transport, inducing stem elongation, leaf area expansion and flowering in plants (Khan, Samiullah 2003).

An adequate combination of GA and K foliar spray can exert large effect on the fundamental processes of plant growth and development, leading to higher BMD. GA occupies a prominent position in mediating a variety of plant physiological processes, including seed germination, photosynthesis, translocation of food material, and synthesis of mRNA coding for hydrolytic enzymes (Tiwari et al. 2011; Khan et al. 2012; Qudassi et al. 2014).

Vanbel (1990) found that an adequate supply of K plays a key function in chlorophyll formation. Tuna et al. (2010) observed by using a combination of K 0.01 g L⁻¹ and 2). A considerable increase in these parameters was recorded in treatment G2, K2 followed by G1, K1. The control treatment (G0, K0) showed lowest value for all parameters measured.

Different combinations of K and GA were also found to be more effective in promoting AGR and RGR of cucumber plants (Table 3). The highest AGR and RGR was recorded in treatment G2, K2 followed by G1, K1 and G3, K3. Biomass duration (BMD) was significantly higher in the K 2.5 g L⁻¹ and GA, 0.010 g L⁻¹ treatment over control. The combination of K and GA also increased leaf chlorophyll a, b and carotenoid concentration of cucumber plants over control (Table 4).

The highest concentration of calcium occurred in plants in the G2, K2 treatment, while the combination G3, K3 showed maximum magnesium and sodium concentration (Table 4). All treatment combinations resulted in higher Ca concentration in comparison to that in the control (Table 4). K in high concentration acted as a strong competitor affecting Mg uptake, as the foliar spray with G2, K2 resulted in minimum Na and Mg concentrations, that were slightly above the control level.

Exogenously applied GA with K not only enhanced growth and physiological parameters of cucumber but also promoted fruit yield and quality (Table 5). The lowest yield was obtained in the control (G0, K0). The highest relative fruit set, fruit fresh and dry weight was obtained with the combination G2, K2 followed by G1, K1.

Table 4. Effect of foliar spray of potassium and gibberellic acid on chlorophyll, carotenoid and mineral concentration of parthenocarpic cucumber cv. ‘KUK-9’. G, GA, 0.005 g L⁻¹; G, GA, 0.01 g L⁻¹; G, GA, 0.015 g L⁻¹; K, K 1.0 g L⁻¹; K, K 2.5 g L⁻¹; K, K 5.0 g L⁻¹. Each value is a mean of five replicates, values in column followed by same letter are not significantly different.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Chlorophyll a (mg g⁻¹ FW)</th>
<th>Chlorophyll b (mg g⁻¹ FW)</th>
<th>Carotenoids (mg g⁻¹ FW)</th>
<th>Calcium (%)</th>
<th>Magnesium (%)</th>
<th>Sodium (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1.16d</td>
<td>0.72d</td>
<td>0.51d</td>
<td>1.24d</td>
<td>0.30b</td>
<td>1.23c</td>
</tr>
<tr>
<td>G,K</td>
<td>1.66b</td>
<td>0.94b</td>
<td>0.80b</td>
<td>1.55b</td>
<td>0.33a</td>
<td>0.36a</td>
</tr>
<tr>
<td>G,K</td>
<td>2.19a</td>
<td>1.73a</td>
<td>0.98a</td>
<td>2.92a</td>
<td>0.34a</td>
<td>0.33b</td>
</tr>
<tr>
<td>G,K</td>
<td>1.45c</td>
<td>0.83c</td>
<td>0.67c</td>
<td>1.44c</td>
<td>0.31b</td>
<td>0.29c</td>
</tr>
<tr>
<td>LSD (P ≤ 0.05)</td>
<td>0.033</td>
<td>0.0348</td>
<td>0.113</td>
<td>0.038</td>
<td>0.203</td>
<td>0.0318</td>
</tr>
<tr>
<td>ANOVA (F₁,₈)</td>
<td>1.846**</td>
<td>1.838**</td>
<td>32.48**</td>
<td>9.605**</td>
<td>8.095**</td>
<td>1.79**</td>
</tr>
</tbody>
</table>
Table 5. Effect of foliar spray of potassium and gibberellic acid on fruit yield attributes of parthenocarpic cucumber cv. ‘KUK-9’. G, GA, 0.005 g L⁻¹; G, GA, 0.01 g L⁻¹; G, GA, 0.015 g L⁻¹; K, K 1.0 g L⁻¹; K, K 2.5 g L⁻¹; K, K 5.0 g L⁻¹. Each value is a mean of five replicates, values in column followed by same letter are not significantly different

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Fruit set (%)</th>
<th>Fresh weight of fruit (g)</th>
<th>Dry weight of fruit (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>68.0d</td>
<td>114.0d</td>
<td>19.1c</td>
</tr>
<tr>
<td>G, K</td>
<td>85.1b</td>
<td>174.2b</td>
<td>30.2b</td>
</tr>
<tr>
<td>G, K</td>
<td>91.2a</td>
<td>209.3a</td>
<td>43.1a</td>
</tr>
<tr>
<td>G, K</td>
<td>80.0c</td>
<td>167.1c</td>
<td>29.0c</td>
</tr>
<tr>
<td>LSD (P ≤ 0.05)</td>
<td>0.175</td>
<td>0.96</td>
<td>2.05</td>
</tr>
<tr>
<td>ANOVA (F₁₈,₃)</td>
<td>3.32**</td>
<td>1.781</td>
<td>2.501**</td>
</tr>
</tbody>
</table>

also observed an increase in chlorophyll and carotenoid content in salinity stressed maize plants after foliar application of GA₃. In contrast, Anderson and Robertson (1960) noticed alteration in carotenoid formation leading to photodestruction of chlorophyll by application of various chemicals to plant.

K at a high concentration acts as a strong competitor affecting Mg uptake. Koukoulakis et al. (1988) observed an antagonism effect on Mg of tomato leaves with increased levels of K. GA₃ increases the Ca²⁺ activity affiliated with endoplasmic reticulum and activates Ca²⁺ flux across the plasma membrane (Bush et al. 1993). Antagonistic correlations between potassium and sodium were also reported by Hey, Kramer (1993) and Song, Fujijama (1996).

Talon et al. (1992), Deckers (2002) and Dorcely et al. (2009) also reported that foliar application of plant growth regulating substances, particularly GA₃, have positive effect on yield quality and quantity. It may be due to the fact that during flowering and fruit setting stages, there is a critical demand for physiological activation to perform biological reactions in plants, which require a high amount of K and other nutrients (Ding et al. 2006).

In conclusion, foliar application of K and GA₃, in the appropriate combination at optimal concentration, particularly G, K, may be an effective strategy to maximize the growth and development of parthenocarpic cucumber. This combination can be tested further under field conditions and can be recommended to farmers after proper confirmation.

Acknowledgements

The authors are grateful to Kurukshetra University, Kurukshetra, India for providing laboratory and other infrastructural facilities. Thanks are also owed to Dr. Satyender Yadav and Dr. Dharam Singh, Centre of Excellence for Vegetable Indo-Israel, Karnal, India for assistance during the research work.

References

Khan TA, Mazid M, Ansari SA, Azam A, Naeem A. 2012. Zinc oxide nanoparticles promote the aggregation concanavalin A.
Effect of potassium and gibberellic acid on F1 hybrid cucumber

Received 22 September 2015; received in revised form 11 April 2016; accepted 2 May 2016