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Abstract

Th e recombinant virus-like particles (VLPs) generated by heterologous expression of RNA 
bacteriophage coat protein genes have been proposed as promising carriers of foreign epitopes and 
nucleic acids for development of novel vaccines and gene therapy tools. Here, we investigated the 
possibility to produce bacteriophage GA coat protein-derived VLPs in yeast Saccharomyces cerevisiae
and Pichia pastoris. To optimize growth conditions, three expression systems have been explored: 
GAL1 and GAL10 promoter-directed expression in S. cerevisiae as well as AOX1 promoter-directed 
expression in P. pastoris. Synthesis of GA coat protein and formation of VLPs was observed in all 
three cases. GA VLPs were purifi ed by a single size-exclusion chromatography step till 80 to 90 % of 
homogeneity. Th e fi nal amount of purifi ed VLPs varied between 0.6 to 2.0 mg per 1 g of cells for S. 
cerevisiae, while expression in P. pastoris resulted in VLP yield of up to 3 mg from the same amount 
of cells. Th e recombinant VLPs obtained may be further used for exposition of foreign epitopes 
on their surface via chemical coupling and/or packaging of immunostimulatory DNA sequences 
internally. 
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Introduction

Th e RNA bacteriophages (phages) are small viruses with a simple organization. Th eir T = T = T
3 icosahedral shell is composed of 180 copies of the coat protein (CP) and one copy of the 
maturation protein that encapsidates approximately 3,500-nucleotide-long genomic RNA. 
Th ese phages were fi rst isolated from Escherichia coli (Loeb, Zinder 1961), but later were 
also found in Caulobacter (Schmidt 1966), Caulobacter (Schmidt 1966), Caulobacter Pseudomonas (Bradley 1966) and Acinetobacter
(Coffi   1995). To date, the coliphages have been classifi ed into four groups based on their 
serological and physicochemical properties. Groups I and II with MS2 and GA phages as 
the type species are quite similar and are collectively called group A. Phages Qβ and SP, 
members of groups III and IV, respectively, together form group B (Furuse 1987).

Th e molecular biology of the RNA phages has been extensively studied (van Duin 1999; 
Weber 1999). In addition, high-resolution X-ray structures of several RNA phages have 
been determined (Valegård et al. 1990; Liljas et al. 1994; Golmohammadi et al. 1996; Tars et 
al. 1997; Tars et al. 2000). Th ese data together with the observation that phage CPs alone in 
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absence of the viral nucleic acid are able to form non-infectious virus-like particles (VLPs) 
in E. coli (Kozlovska et al. 1993; Pushko et al. 1993) have made icosahedral phage shells 
attractive as objects for gene and protein engineering manipulations. Th us, recombinant 
VLPs formed by CPs of group-I RNA phages fr and MS2 have been successfully used for 
presentation of foreign protein sequences on their surface via genetic fusion (Mastico et 
al. 1993; Heal et al. 1999; Voronkova et al. 2002). However, steric factors limit the length of 
peptides that can be added to the CP while still preserving its ability to self-assemble into 
VLPs. Alternatively, the desired peptides can be chemically coupled to surface-exposed 
lysine residues (Jegerlehner et al. 2002).

Recently, we and others have demonstrated the potential of yeast cells as a host for 
producing properly folded phage MS2 and Qβ CP-derived VLPs (Legendre, Fastrez 2005; 
Freivalds et al. 2006). Here, we continue our investigations to show the formation of 
group-II RNA phage GA VLPs in two diff erent yeasts to therefore extend a way for further 
development of a yeast-derived phage VLP technology.

Materials and methods

Strains and plasmid constructions
Th e GA CP-encoding gene was amplifi ed with desired oligonucleotide primers by 
polymerase chain reaction (PCR) from Escherichia coli expression plasmid pGA-355-24 
(I. Cielēns, personal communication). Th e CP sequence encoded by this plasmid diff ers 
from that deposited in GenBank (Acc. No. X03869; Inokuchi et al. 1986) at positions 59 
and 79 and is identical to that published by Tars et al. (1997). Construction details are 
summarized in Table 1. For expression in S. cerevisiae strain YPH499, the appropriate PCR 
fragment was digested with BamHI/HindIII and cloned in pESC-URA vector, resulting in 
a pESC-GA plasmid. For expression in the S. cerevisiae strain AH22, the PCR fragment 
was digested with XbaI/BglII and cloned in pFX-Qβ, resulting in a pFX-GA plasmid. Th e 
P. pastoris expression plasmid pPIC-GA was generated by cloning of the respective PCR 
fragment into pPIC3.5K vector using BamHI and SnaBI restriction sites. PCR and cloning 
procedures were carried out using standard molecular biology protocols (Sambrook et al. 
1989).

Yeast transformation and expression conditions
S. cerevisiae strains AH22 and YPH499 were transformed with pFX-GA and pESC-GA, 
respectively, using standard lithium acetate/polyethylene glycol procedure as decribed 
by Gietz et al. (1992). Th e YPH499/pESC-GA transformants were selected on uracil-free 
agarized synthetic dextrose (SD) minimal medium according to manufacturer’s protocol. 
For expression, individual transformants were cultivated in liquid synthetic galactose (SG) 
medium for up to 72 h, until OD590 reached 6 - 7.

Transformed AH22/pFX-GA clones were selected on agarized rich YEP medium 
containing 2 % glucose (YEPD medium) supplemented with 10 mM formaldehyde.  
Individual transformants were then incubated in liquid YEPD medium supplemented 
with 5 mM formaldehyde for 20 to 24 h until optical density OD590 reached 6 - 8. For 
induction, the cells were collected by low-speed centrifugation and resuspended in YEP 
medium with 3 % galactose (YEPG medium), and cultivation was continued for another 
20 - 24 h, with fi nal OD590 10 - 14.
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Electroporation of P. pastoris with the Ecl136II-
linearized pPIC-GA plasmid and selection of clones 
containing multiple integrations of expression 
cassette into yeast chromosome were performed 
as described by Freivalds et al. (2006). GA CP gene 
expression in P. pastoris was achieved according 
to recommendations of the manufacturer. Briefl y, 
selected clones were incubated in BMGY medium 
for 20 to 24 h until OD590 reached 4 - 6; then the 
cells were collected by low-speed centrifugation 
and resuspended in BMMY induction medium and 
cultivated for 72 h. All cultivations were performed 
in 500 mL fl asks with 100 mL of expression media 
at 30 °C on a rotary shaker either at 200 rpm (S. 
cerevisiae) or at 250 rpm (P. pastoris). Th e cells were 
collected by low-speed centrifugation, washed with 
distilled water and stored at –20 °C until use.

Purifi cation of GA VLPs
For purifi cation of GA VLPs, 1 g of yeast cells was 
resuspended in 4 mL of lysis buff er (20 mM Tris-
HCl, 5 mM EDTA, 0.65 M NaCl, 1 mM PMSF, pH 
7.8). To disrupt the cells, suspension was applied 
to the French press (three strokes, 20 000 psi). Th e 
unsoluble cell debris was separated by centrifugation 
(1 h, 15 500 g) and discarded. Soluble supernatant 
proteins were concentrated by addition of solid 
ammonium sulfate to 60 % of saturation and 
incubation overnight at 4 °C. Aft er centrifugation 
20 min at 8000 g, the proteins were solubilized into 
1 mL of lysis buff er without PMSF and loaded onto 
a Sepharose CL4B gelfi ltration column (V = 90 mL, 
h = 110 cm), with the buff er fl ow rate approximately 
1.0 mL h-1, and 1.5 mL fractions were collected. All 
of the purifi cation steps were performed at 4 °C. 

Protein content in cell and protein samples 
was analyzed in denaturating polyacrylamide gels 
(PAAG), with 4 % stacking and 15 % separating 
gel, according to standard protocols. To visualize 
protein bands, the gels were stained with Coomassie 
Brilliant Blue (CBB). Ouchterlony’s double radial 
immunodiff usion with cell lysates was performed 
using rabbit polyclonal anti-GA antibodies. VLP 
electrophoresis in 1 % native agarose gels was 
performed in TAE buff er (pH 8.4) for about 1 h at 
a constant 90 mA current. VLPs were concentrated Ta
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by dialysis against storage buff er (50 % glycerol, 10 mM Tris-HCl, 2.5 mM EDTA, 325 mM 
NaCl, pH 7.8) for at least 24 h. Protein concentration measurements were made according 
to Bradford (1976).

For electron microscopy, samples were adsorbed on carbon-formvar coated grids and 
stained with 2 % phosphotungstic acid (pH 6.8); the grids were examined with a JEM 
100C electron microscope (JEOL Ltd., Tokyo, Japan) at an accelerating voltage 80 kV. 

Results

Design of constructs and expression
In order to establish optimal conditions for generation of GA VLPs in yeast, we aimed to 
compare three well-described expression systems by cloning of phage GA CP gene in three 
diff erent vectors. Th e resulting expression units are schematically presented in Fig. 1A. In 
the fi rst approach, the pESC-URA vector was selected as a template for cloning and GAL1
promoter-directed expression. Th is vector was previously used for generation of phage 
MS2 VLPs (Legendre, Fastrez 2005). In a second approach, we focused on the pFX-derived 
plasmid, which represents an already established VLP producing system exploiting hybrid 
GAL10-PYK1 promoter. In addition, this vector encodes for the FDH1 gene of Candida 
maltosa, conferring resistance to formaldehyde (Sasnauskas et al. 1992), which is very 
convenient for quick selection of transformants on rich media. In a third approach, the 
strong AOX1 promoter-directed expression provided by the P. pastoris expression vector 
pPIC3.5K was undertaken. 

All three constructs pESC-GA, pFX-GA, and pPIC-GA were transformed in their 
corresponding yeast host (YPH499, AH22, and GS115, respectively). While both S. cerevisiae
vectors exist in the cells as episomes, pPIC3.5K does not contain a yeast replication origin 
and needs to be integrated into the host genome via homologous recombination. Due to 

Fig. 1. Expression of the GA CP gene in yeast. A, schematic presentation of the vectors used. Th e 
relative direction of genes and promoters is indicated by arrows. URA3, HIS4, and FDH1 encode 
for genes used as primary markers for selection of yeast transformants, while the Kan gene allows 
secondary screening of P. pastoris for high-copy integrants. B, CBB-stained PAAG demonstrating 
the total synthesis level of GA CP. M, protein molecular weight marker, (-), non-transformed P. 
pastoris cells as a negative control. Lanes 1, 2 and 3 represent cell lysates from strains YPH499, AH22, 
and GS115, respectively. Accumulation of GA CP is indicated by an arrow. 



the presence of Kan gene in the expression unit, we have selected clones with multiple 
expression units integrated in the yeast chromosome, which accordingly exhibited 
increased resistance to Geneticin in P. pastoris. 

Th e selected clones were cultivated in appropriate conditions ensuring maximal 
expression level in each particular case. Optical densities of yeast cells notably varied 
between strains due to the content of cultivation media, resulting in diff erent amounts of 
cells obtained at the end of cultivation (Table 2). Total synthesis of GA CP was monitored by 
CBB-stained PAAG (Fig. 1B) showing well-detectable accumulation of ~13.6 kDa protein 
in strains AH22 and GS115, while in strain YPH499 the production was signifi cantly lower. 
Nevertheless, presence of the specifi c product in the latter case was verifi ed by Western 
blot with GA-specifi c antibodies (data not shown). Th erefore synthesis of GA CP was 
confi rmed in all three cases and we proceeded to analyze solubility and self-assembly of 
the target protein.

Purifi cation and characterization of GA VLPs
As the fi rst step of purifi cation, the cells were disrupted by French press and the soluble 
protein fraction was analyzed by Ouchterlony double radial immunodiff usion with anti-
GA antibodies. Th e obtained titres (Table 2) correlated well with the absolute GA CP 
amounts (Fig. 1B), suggesting that the majority of the target protein was in the soluble 
protein fraction and also providing indirect evidence of the presence of VLPs in cell 
lysates, since unassembled CP usually accumulates as unsoluble aggregates in cells (our 
unpublished observations).

For further purifi cation, a concentrated mixture of soluble proteins was subjected to 
size-exclusion chromatography on Sepharose CL4B beads. As expected, the majority of the 
target protein was eluted between 36 to 42 ml, which corresponds to the calculated volume 
where VLPs may appear. Th e respective part of the elution profi le is presented in Fig. 2A. 
Importantly, the larger part of contaminants was removed during the chromatography, 
indicating the eff ectiveness of the particular method. 

To verify the presence of VLPs, the same fractions were also subjected to native agarose 
gel electrophoresis (Fig. 2B). Th e gel was stained with ethidium bromide demonstrating a 
strong nucleic acid signal that was correlated with the amount of GA CP (Fig. 2A). Taken 
together, these data strongly suggest formation of VLP nucleoprotein complexes migrating 
towards anode in native agarose gel. In part, this might be explained by presence of a large 
amount of negatively charged nucleic acid non-specifi cally packed inside the VLPs.

Based on the information presented above, the peak VLP-containing fractions were 
pooled and concentrated. Overall amounts of the obtained VLPs are presented in Table 
2. Th ese data correlated well with both the total synthesis level of GA CP (Fig. 1B) and 
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Table 2. Summary of generation of phage GA VLPs in yeast. Replication in at least two independent 
experiments

Strain/plasmid Amount of cells aft er  Immunologic GA VLPs 
 cultivation (g L-1) anti-GA titers (mg from 1 g of cells)
YPH499/pESC-GA 15 - 20 1:4 - 1:8 0.6 - 0.8
AH22/pFX-GA 40 - 50 1:16 1.5 - 2
GS115/pPIC-GA 40 - 50 1:32 2.5 - 3
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immunological anti-GA titers obtained in supernatant (Table 2). Visually, the overall purity 
of the VLP samples in PAAG can be estimated as 80 to 90 %, which is rather high aft er only 
a single purifi cation step (Fig. 3A). Not surprisingly, the highest purity was associated with 
the highest expression level, obtained for P. pastoris. Finally, the samples were subjected 
to electron microscopy, which confi rmed the formation of icosahedral phage GA-like 
particles in all three cases (Fig. 3B).

Taken together, an effi  cient GA VLP generation system was established in both yeast 
S. cerevisiae and P. pastoris. Th e highest yield of VLPs was found in the case of P. pastoris. 
Such recombinant wild-type GA VLPs may be further used for exposition of foreign 
peptides on their surface via chemical coupling and/or packaging of immunostimulatory 
DNA sequences internally. 

Discussion

Highly immunogenic VLPs generated by heterologous expression of viral structural genes 
have become a powerful tool for vaccine development. In addition to being eff ective 

Fig. 2. Purifi cation and detection of recombinant GA VLPs. A, CBB-stained PAAG that demonstrates 
protein content in P. pastoris-derived peak column fractions. Th e numbers below correspond to 
appropriate fractions. Both S. cerevisiae strains gave similar profi les but with accordingly lower 
protein amount (data not shown). M, protein molecular weight marker. Th e same samples were 
analyzed in ethidium bromide stained native agarose gel (B). Target proteins are marked by arrows. 
Anode and cathode are designated as “+” and “-“, respectively. 
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vaccines against the corresponding virus from which they were derived, VLPs can also be 
used to present foreign epitopes to the immune system. Th is approach might be combined 
with the packaging of selected genes and drugs inside VLPs (for recent review articles see 
Georgens et al. 2005; Xu et al. 2006; Jennings, Bachmann 2008). 

Icosahedral capsids of the simple RNA phages have attracted attention of scientists 
as promising carriers of foreign epitopes and nucleic acids. A special interest has been 
devoted to group III phage Qβ VLPs. Bacterially expressed Qβ VLPs have been explored 
for chemical coupling of desired peptides to surface-exposed lysine residues. To increase 
their immunogenicity, such chimeric VLPs can be further engineered by loading them 
with short synthetic DNA sequences (Storni et al. 2004; Schwarz et al. 2005). Several Qβ 
phage-derived therapeutic vaccine candidates have already entered phase I to III clinical 
trials (Kündig et al. 2006; Maurer, Bachmann 2007; Tissot et al. 2008).

However, for vaccine development, E. coli-derived VLPs need to be purifi ed from 
contamination of bacterial endotoxins, which is costly and time-consuming. Alternatively, 
VLPs could be produced in “endotoxin-free” organisms, such as yeast, which has been 
regarded as generally safe for human use. Up to now, a large number of structural genes 
from mammalian viruses have been expressed in yeast resulting in formation of VLPs 
(Valenzuela et al. 1982; Kniskern et al. 1986; Sasnauskas et al. 1999; Samuel et al. 2002; 
Slibinskas et al. 2004; Juozapaitis et al. 2007). Th e yeast expression system has been used 
successfully to produce licensed prophylactic vaccines against human hepatitis B virus 
(McAleer et al. 1984) and human papillomavirus (Bryan 2007). 

An important drawback of repetitive vaccination with chimeric VLPs might be their 
limited eff ectiveness due to the presence of neutralizing antibodies against capsid protein 
induced aft er the fi rst application (Da Silva et al. 2001). Th erefore, technologies to generate 
a broad spectrum of carrier VLPs need to be developed. It should be also noted that humans 
normally do not possess pre-existing antibodies to RNA phages and the immune response 
will therefore not be impaired. Taking into account these considerations, we extended our 

Fig. 3. Characterization of purifi ed GA VLPs. A, CBB-stained PAAG of the fi nal product aft er size-
exclusion chromatography. M, protein molecular weight marker. Lanes 1, 2 and 3 demonstrate the 
purity of VLPs obtained from strains YPH499, AH22, and GS115, respectively. B, direct evidence 
of VLP formation by electron microscopy. Only VLPs purifi ed from yeast P. pastoris are presented. 
Scale bar: 50 nm.
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investigations to optimize generation of phage GA-derived VLPs in yeast. Th e phage GA 
CP gene was therefore cloned and expressed in three diff erent vectors. 

Despite the rather small production of GA CP observed under GAL1 promoter in 
pESC-URA, this vector contains another GAL10 promoter located in the opposite 
orientation. Th is might be advantageous for co-expression of two genes for protein-
protein or protein-nucleic acid interaction studies in S. cerevisiae. Signifi cantly higher 
expression of target protein was observed in case of pFX-GA. Th is is in line with previous 
data about pFX-directed high-level expression and VLP formation of polyomavirus VP1 
and mumps virus nucleoprotein in S. cerevisiae (Sasnauskas et al. 1999; Samuel et al. 2002). 
Finally, methylotrophic yeast, P. pastoris, was superior in production of GA CP and yield 
of recombinant VLPs, therefore confi rming its selection as a host microorganism for high-
level expression of recombinant genes for both basic laboratory research and industrial 
manufacture (for a review see Macauley-Patrick et al. 2005). 

Recently, we demonstrated the assembly of phage Qb VLPs in S. cerevisiae and P. 
pastoris using pFX- and pPIC3.5K-derived expression vectors, respectively (Freivalds 
et al. 2006). Th e results obtained were quite similar to those described in this article in 
that selection of P. pastoris clones with multiple expression units integrated in the yeast 
chromosome resulted in increased expression and outcome of recombinant VLPs while 
those with single insertion demonstrated rather low synthesis of the target protein. 
However, not always more integration events leads to higher production, as shown for 
synthesis of the measles virus nucleoprotein (Slibinskas et al. 2004).  Th us, wide screening 
and selection of individual P. pastoris clones is needed for obtaining maximum production 
in each particular case.
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Kopsavilkums

RNS bakteriofāgu apvalka proteīnu veidotās rekombinantās vīrusveidīgās daļiņas (virus-
like particles; VLPs) uzskata par daudzsološu peptīdu un nukleīnskābju transportformu 
jauna tipa vakcīnu un gēnu terapijas līdzekļu konstruēšanai. Šajā darbā mēs pētījām 
iespēju iegūt bakteriofāga GA VLPs raugos Saccharomyces cerevisiae un Pichia pastoris. 
Kultivēšanas apstākļu optimizācijai salīdzināja GAL1 un GAL10 promoteru kontrolētu 
ekspresiju S. cerevisiae, kā arī AOX1 promotera kontrolētu ekspresiju P. pastoris. Visos 
trīs gadījumos konstatēja GA apvalka proteīna sintēzi un VLP veidošanos. Pēc viena 
hromatogrāfi jas cikla gēlfi ltrācijas kolonnā frakcionētās GA VLPs sasniedza 80 līdz 90 
% tīrību. Kopumā attīrīto VLP iznākums bija 0.6 līdz 2.0 mg no 1 g S. cerevisiae šūnu, 
bet P. pastoris gadījumā tas sasniedza pat 3 mg no identiska šūnu daudzuma. Iegūtās 
rekombinantās VLPs potenciāli varētu izmantot ķīmiski piesaistītu peptīdu eksponēšanai 
uz virsmas, kā arī imunostimulatoru DNS sekvenču pakošanai daļiņu iekšienē. 


