Transcriptomic response to methyl jasmonate treatment of Scots pine (*Pinus sylvestris*) seedlings

Krista Kānberga-Siliņa¹, Elza Rauda¹, Vilnis Šķipars¹, Adam Vivian-Smith², Igor Yakovlev², Baiba Krivmane¹, Ilze Šņepste¹, Dainis Ruņģis¹*

¹Genetic Resource Centre, Latvian State Forest Research Institute "Silava", Rigas 111, Salaspils LV–2169, Latvia ²Norwegian Institute of Bioeconomy Research, Section Forest Genetics and Biodiversity, Høgskoleveien 8, 1433 Ås, Norway

*Corresponding author, E-mail: dainis.rungis@silava.lv

Abstract

Scots pine (*Pinus sylvestris* L.) has high ecological and economic importance in Latvia. Induced resistance can protect trees from pathogen attack, and has potential for sustainable pest management. The effect of methyl jasmonate (MeJA) on the gene expression profile of Scots pine was determined in order to assess its potential to induce resistance. Two year old Scots pine ramets were treated with 10 mM MeJA and needle samples were collected two weeks after treatment. RNA was isolated from samples and transcription profiling was performed using the Ion Torrent PGM platform, and RT-PCR was used to confirm expression profiles for selected genes. Gene expression profiles results were summarized by a gene network analysis using gene functionality annotations. Results revealed that MeJA treatment diverts metabolic functions from growth and development to defensive pathways. Analysis of the transcriptome indicated that the MeJA treated Scots pine clone had an altered gene expression profile two weeks after the treatment, suggesting that the induction of defence mechanisms was still active at this time. The organism is in an induced state at least two weeks after the treatment, which confirms the potential of the MeJA use to induce resistance responses in Scots pine trees.

Key words: gene profiles. induced resistance, methyl jasmonate, next generation sequencing, Scots pine. **Abbreviations:** DEG, differentially expressed gene; MeJA, methyl jasmonate; RT-PCR, real time polymerase chain reaction.

Introduction

Scots pine (*Pinus sylvestris* L.) has the largest natural distribution of any pine species (Richarson, Rundel 1998). In Europe, Scots pine covers at least 20% of the forested area (Masón, Alía 2000; Brus et al. 2011). While having a high economical value, conifers are susceptible to various pathogens, like root and butt rot caused by *Heterobasidion annosum* (Asiegbu et al. 2005), and in Latvia, almost half of the forested areas are affected by a variety of pathogens and pests every year (http://www.csb.gov.lv/statistikas-temas/mezsaimnieciba-publikacijas-43247.html). One possible approach to protect plants from pathogen attack is to prime and induce innate resistance responses, which enable plants to respond more rapidly to infections by limiting pathogen development (Hammerschmidt 1999).

It is important for a tree to protect itself from pathogens and diseases, but to also balance resource allocation between defence and growth processes, such as wood formation (Smith 2015). Phenylpropanoids and terpenes are defence compounds used by plants (Wink 1988), but the phenylpropanoid biosynthesis pathway also produces lignin precursors and other compounds related to wood formation (Whetten, Sederoff 1995; Hatfield, Vermerris 2001). *In vitro* studies have revealed a strong relationship between the carbohydrate supply and the formation of phenolic compounds in apple tree shoot cultures, indicating competition for carbohydrates between growth-related and defence-related metabolic processes (Lux-Endrich et al. 2000).

Chitinases are enzymes that hydrolyse chitin, which is a homopolymer of N-acetylglucosamine. Chitin is a structural component in fungal and some algae cell walls, as well as in arthropod shells and cuticles (Sahai, Manocha 1993). In plants, chitinase genes are represented by large gene families. It is possible that each chitinase plays a different role in the protection of the plant against different pathogens (Schlumbaum et al. 1986), though some may also exhibit activity towards structural compounds that have similarity to chitin, which in turn, have important roles in plant development (Passarinho, De Vries 2002). Several classes of chitinase genes are distinguished based on their amino acid sequences. In plants, chitinases from classes I, II and IV are most abundant (Shinshi et al. 1990; Iseli et al. 1993; Cohen-Kupiec et al. 1998). One chitinase gene from each of these three classes was selected to validate their expression using real time polymerase chain reaction (RT-PCR). It has been previously reported that the expression of chitinase genes increases after methyl jasmonate (MeJA) treatment, and that different chitinase genes, even within same class, can exhibit differential expression patterns (Su et al. 2015).

MeJA is a compound that participates in plant defense response mediation, including inducing expression of proteinase inhibitor genes and wound-response genes (Farmer, Ryan 1990; Creelman et al. 1997). Jasmonate has been shown to play a significant role in plant pathogen resistance (Vijayan et al. 1998). MeJA significantly increases monoterpene concentration in the xylem of Pinus armandi saplings (Pham et al. 2014). Many conifers possess defence responses that are induced in response to insect attack, MeJA treatment, mechanical wounding or fungal inoculation (Creelman et al. 1997; Miller et al. 2005; Moreira et al. 2009). These induced defences include the activation of existing resin ducts and the developmental formation of traumatic resin duct systems in the bark and xylem (Hudgins et al. 2003). It has been reported that application of 100 mmol L⁻¹ MeJA to intact bark of Norway spruce induces anatomical defense reactions within 30 days (Franceschi et al. 2002). In field experiments, application of MeJA to individuals prior to planting considerably reduced weevil-caused mortality in P. sylvestris (Zas et al. 2014). In Norway spruce, MeJA treatment resulted in up-regulation of the PaPX3 and PaChi4 genes, and the genes involved in lignin biosynthesis PaPAL1, PaPAL2, PaC4H3/5 and PaHCT1. Likewise, the ethylene biosynthesis related genes PaACO and PaACS were also induced by MeJA treatment (Yaqoob et al. 2012).

High-throughput sequencing and bioinformatics tools have been used to investigate the influence of various factors on gene expression in plants (Hoth et al. 2002; Liu et al. 2014). Next generation sequencing allows for gene expression profiling even in non-model organisms, where genome sequences are not available (Morozova, Marra 2008). A high quality genome sequence is not available for *P. sylvestris*; however, partial transcriptomes have been published (Sun et al. 2011, Wachowiak et al. 2015). Microarrays have been successfully used to profile gene expression in *Pinus radiata* saplings exposed to ethephon, but using RNA-Seq could provide a better understanding of gene expression, since the later types of methods do not rely on sequences to designed complementary oligonucleotide probes (Dubouzet et al. 2014).

This study investigated differential gene expression profiles in one *P. sylvestris* clone two weeks after MeJA treatment using high throughput RNA sequencing methods. Differentially expressed genes (DEGs) were annotated, and gene expression networks were generated. RT-PCR was used to validate the expression of three chitinase genes.

Materials and methods

Plant material and treatment

Six two-year-old *P. sylvestris* ramets of clone Sm 9–III–2 were grown in a climate chamber for two months prior to

the experiment. Three ramets were treated with 5 mL 10 mM MeJA in 0.1% Tween 80. Three other ramets were sprayed with 5 mL 0.1% Tween 80 as a control. After treatment, all ramets were placed in clear plastic bags for two days to avoid cross reaction with volatile compounds. Growth conditions in the climate chamber were 8 h darkness and 16 h light at 17 to 22 °C temperature. Two weeks after the treatment needles were collected and stored at -80 °C.

RNA extraction

The CTAB buffer-based method (Yang et al. 2008) was used for total RNA extraction with modifications as described by Rubio-Piña and Zapata-Pérez (2011). RNA quantity was assessed fluorometrically using a Qubit fluorometer and Quant-iT reagents (Invitrogen) following the manufacturer's instructions. RNA extracts were treated using DNase I (Thermo Fisher) and purified using a standard phenol/chloroform extraction.

Next generation sequencing

Next generation sequencing was done in collaboration with the Norwegian Institute of Bioeconomy Research (NIBIO). The quality, quantity and structural integrity of total RNA was assessed using an Agilent Technologies 2100 Bioanalyzer with Agilent RNA 6000 Nano and Pico Kits according to manufacturer's instructions.

RNA samples were enriched for polyadenylated mRNAs from the total RNA samples using the Dynabeads mRNA DIRECT[™] Micro Kit (Life Technologies). The quantity of total extracted from one of the treated samples (Sm8) was not sufficient for library construction; therefore, five transcriptome libraries were produced using the Ion Total RNA-Seq Kit v2 (Life Technologies) according to the manufacturer's instructions. RNA quantity and fragment size was assessed by the Qubit RNA Assay Kit on a Qubit Fluorometer and the Agilent RNA 6000 Pico Kit using an Agilent 2100 Bioanalyzer (Thermo Fisher Scientific) following the manufacturers' protocols. Sequencing was carried out using the Ion PGM[™] Sequencing 200Kit v2 (catalogue No. 4482006) on Ion 318[™] v2 Chips according to the manufacturer's protocol.

Real time PCR

For confirmation of expression profiles, three chitinase genes were selected, each representing a different chitinase class: I, II and VII. Sequences for primer design were obtained from the expressed sequence transcript consensus sequences. Several primer pairs for each gene were designed using the Primer3 software (http://bioinfo.ut.ee/primer3/). The primers with the highest efficiency (at least 90%) were used for further analysis (Table 1).

DNA was synthesized using TaqMan Reverse Transcription reagents (Applied biosystems) according to the manufacturer's protocol. Gene expression was determined using the comparative $\Delta\Delta$ Ct RT-PCR method

Primer	Sequence (5'-3')	Annealing temperature
Chit1.3F	CGGCAGCTAATAGTTTCCCA	57 °C
Chit1.3R	GAAGTTTGGCCGAAGAAAGC	
Chit2.1F	TTTAAGACGGCGGTGTGGTT	60 °C
Chit2.1R	ACCCCGCCGTTAATGATGTT	
Chit7.2F	ACTGCGATTCCACCTACACG	60 °C
Chit7.2R	AGCCCAGGTAATTTCCAGCG	
GapdhF	ACGGTTTTGGTCGAATTGGA	60 °C
GapdhR	CCCCACGAGCTCGATATCAT	
Tub5F	CCACATTGGACAGGCCGGTATCC	60 °C
Tub5R	AATGCCGTGCTCGAGGCAGTA	
Act5F	TCATGGTTGGCATGGGACAG	60 °C
Act5R	CTCCATGTCATCCCAGTTGC	

Table 1. Primer sequences and annealing temperatures

with three endogenous control genes as references for normalization: *GAPDH* (glyceraldehyde-3-phosphate dehydrogenase; Šķipars et al. 2011); *TUB* (tubulin) and *ACT* (actin; Kānberga-Siliņa, unpublished). Primers and annealing temperatures are shown in Table 1. Experiments were run on a StepOnePlus Real-Time PCR System using 5x HOT FIRE Pol EvaGreen qPCR SuperMix reagents (Solis BioDyne) according to the manufacturer's protocol.

Real time PCR data was analyzed using StepOne software v2.2. Relative quantity of all candidate genes was calculated using all three endogenous control gene $\Delta\Delta$ Cr values.

Data analysis

DNase Fastq format sequence data were analyzed using the CLC Genomics Workbench 7.5.1. software (QIAGEN, Aarhus, Denmark). Due to the absence of a high quality P. sylvestris genome sequence, expressed sequences were utilized using the reference sequences (Wachowiak et al. 2015). Fastq files were imported using the SAM/ BAM procedure and the low quality reads (Q value < 20) were excluded from analysis. Transcriptome libraries for each sample were separately mapped to the reference transcriptome using the RNA-Seq tool with the following parameters: gap cost 2, indel cost 3 and length and a similarity fraction of 0.8. Results were then exported for further data normalization and comparison in the R environment using DESeq library (Anders and Huber 2010). All sample data were grouped as "treated" and "control". Using the "fdr" method, logFC values were obtained, and only reads with $\log FC$ values > |2| were used for further analysis.

To annotate transcriptome sequences we used BLAST for comparing the differentially expressed sequences with the NCBI database (http://www.ncbi.nlm.nih.gov/). Each sequence was annotated separately at 80 % identity threshold.

Gene expression networks were generated using the Cytoscape 3.2.1 program with the GeneMANIA plug-in (Montojo et al. 2014). The program uses several databases

containing information on gene interactions to create a gene network that visually represents the relationship between genes. The NCBI BLASTx was used to identify *Arabidopsis thaliana* protein homologues for the DEGs defined in this study. Two separate networks were created depicting the interactions of the up and down regulated gene groups. The GeneMANIA plugin also provides annotations for gene functionality, which were used to classify the DEGs into functional groups.

Results

Sequencing of gene expression libraries

Five gene expression libraries were sequenced using the Ion Torrent PGM. An average of 76.38% of reads per library were successfully mapped onto the reference transcriptome (Table 2). Using RNA-Seq analysis for each read library we obtained expressed reference contigs, which were further analyzed using the FDR (False Discovery Rate) tool in R. A total of 284 sequences were found to be differentially expressed, while 206 were upregulated in MeJA treated samples and 78 sequences were more highly expressed in the control samples. DEGs were annotated with BLASTn (Appendix 1). Among the most highly expressed up regulated genes was a carbonic anhydrase (KEH16352.1), an acid phosphate (CAC84485.1), and a gene with similarity to an alpha terpineol/1,8-cineole synthase (AFU73861.1). Among the down regulated genes, three genes were highly expressed in the control libraries: an anthocyanidin reductase (AAU95082.1), a 50S ribosomal protein L3 (WP_014093814.1), and a Leucine-Rich Receptor-like protein (XP_007018364.1).

Gene networks

Protein homologues from *A. thaliana* were identified for all of the differentially expressed gene sequences, and gene networks were created for both upregulated and down regulated genes using GeneMANIA in Cytoscape. Both gene groups formed one network for each group

Sample name	Sm3	Sm4	Sm5	Sm6	Sm7
Number of reads	1 975 699	1 496 742	1 807 085	4 543 929	885 484
Mapped fragments	1 619 297	1 161 871	1 352 336	3 770 254	571 301
Average read length,bp	143	185	185	194	208
Proportion of reads mapped	81.96%	77.63%	74.84%	82.97%	64.52%
to reference sequence					

Table 2. RNA-Seq mapping results. Sm3 and Sm4 are treated sample libraries, Sm5, Sm6 and Sm7 are control libraries

without substructures. From the upregulated group, 12 genes (*LSU3*; *AT1G15240/F9L1_19*; *ILR2*; *T2D23.3*; *LOB*; *AT4G23895*; *NDR1*; *AT1G59312*; *AT2G1400D*; *AT3G59210*; *ATPAO3*; *PIP3*) were not included in the gene network, and likewise another 10 genes were not included from the down regulated group (*DREB2C*; *AT4G31480*; *CRRSP18*; *PLP5*; *T22P22_10*; *FIB*; *F19C17.40*; *RPS12*; *PLL3*; *BRCC36A*). The upregulated gene network was more centrally organized (Appendix 2), while the downregulated network contained an expanded and less concentrated network at specific nodes (Appendix 3).

According to gene ontology classification, the upregulated group was dominated by genes that respond to a range of stimuli and are involved in metabolic processes. Only a small fraction of these genes were directly categorized as involved in defence processes. The downregulated gene group was dominated by genes involved in metabolic, developmental processes and cell formation (Fig. 1).

Chitinase gene expression

Gene expression of representatives of three chitinase groups was also determined using RT-PCR: group I (*Chit1*), group II (*Chit2*) and group VII (*Chit7*). The group I chitinase showed a higher expression in treated samples (Sm3, Sm4, Sm8) than in controls, but overall the expression levels were relatively low (Fig. 2). The overall relative expression of the group II chitinase gene was slightly higher and more equal between treated and control samples. Expression of the group VII chitinase gene was the lowest overall, but it was more highly expressed in the MeJA treated samples than in the controls. The highest gene expression level for all three genes was detected in the sample Sm3 (Fig. 2). The expression profiles of these three chitinase genes were similar to the relative expressions identified from the transcriptome profiling data. However, these genes were not included in the upregulated gene group as the relative expression values between treated and control libraries did not exceed the logFC value >|2| threshold.

Discussion

Efficient analysis of gene expression using high-throughput sequencing data requires a high quality reference sequence. Initially, a different Scots pine transcriptome reference sequence ERR015466 (Sun et al. 2011) was utilized for transcript mapping. This resulted in the identification of a large amount of repetitive and retrotransposon sequences in our data, which was not unexpected, as approximately 75% of the conifer genomes is composed of repetitive sequences and retrotransposons (Ahuja, Neale 2005). Analysis of the Pinus taeda genome sequence revealed that analysis parameters utilized for sequence assembly can influence the identification of repetitive sequences (Kovach et al. 2010), which might explain the large number of repetitive sequences identified using the initial reference sequences. Subsequent data analysis was performed with an alternative Scots pine transcriptome as a reference (Wachowiak et al. 2015), and this allowed us to obtain more informative results with a larger number of protein-coding genes being identified, since this study identified 19659 separate contigs representing a total of 40968 unigenes. This means that the reference sequences utilized for transcript

Fig. 1. Gene ontology annotation summary of central genes in up and down regulated gene networks.

Fig. 2. Group I (A), II (B), VII (C) chitinase relative gene expression (RQ), where Sm3, Sm4, and Sm8 are treated samples and Sm1, Sm5, Sm6 and Sm7 are control samples.

mapping had a much deeper coverage than the first library (ERR015466), but even so, the later study may have not been sufficiently representative of the full genomic complement of transcribed genes. The lack of a completely annotated *P. sylvestris* genome, or exomic complement, combined with information on differential splicing, might have reduced the overall accuracy and discovery of differentially transcribed genes in this study.

Seven of the genes down regulated after MeJA treatment are photosystem related, indicating that treated samples have reduced allocation of resources to the photosystem and that biosynthetic pathways have been reorientated to different processes, which is a typical plant response to biotic attacks (Bilgin et al. 2010). Plants can maintain photosynthetic capacity despite the activation of the defence process signalling system; however, growth of the trees can be affected (Attaran et al. 2014). The induction of defence processes can result in slower growth and development, but the individuals would have increased resistance to pathogens, since metabolism, prior to the pathogen attack, would be orientated towards defence processes. Uninduced plants are not primed for the production of defence related metabolic processes, and this provides a direct advantage to the pathogen.

It has been reported that in sugarcane, the activity of Class VII chitinase gradually decreases over time after treatment with MeJA (Su et al. 2015), which could explain the relatively low expression of this gene compared to other two chitinase genes in our study. The relatively higher expression levels of the chitinase genes detected by RT-PCR in sample Sm3 were not found in the analysis of the RNA-Seq data. The expression of the chitinase genes was elevated in all of the MeJA treated libraries, but the difference in gene expression was below the threshold set for identification of differentially expressed genes (logFC value > |2|). The cause of the high levels of chitinase gene expression in sample Sm3 was not immediately obvious. One possibility is that this individual was additionally traumatized at the time of sampling or shortly before, but there was no visual or other evidence to support this. Another possibility is that this individual had some undiagnosed infection or variability, which could also lead to enhanced expression of chitinases (Schlumbaum et al. 1986; Fracetto et al. 2013). Treatment with salicylic acid, MeJA, and abscisic acid has shown that different chitinase genes, even within same class, are transcribed differentially over time (Su et al. 2015). The Chit1 gene is the most promising for induced resistance activity, as class I chitinases have the potential to directly inhibit fungal pathogens, because of their chitinolytic activity.

One of the genes with highest upregulated expression after MeJA treatment was the acidic phosphatase gene. This is a non-specific enzyme that is most likely to be needed in phosphorus hydrolysis and mobilization (Duff et al. 1994). Increased expression of this gene is also observed in senescing A. thaliana leaves, where it could participate in the mobilization of phosphate, which is released during nucleic acid degradation (Buchanan-Wollaston et al. 2005). In addition, three different purple acidic phosphatase genes were detected in the upregulated gene group. This enzyme catalyzes the hydrolysis of various phosphomonoesters and amide substrates, as well as the production of phosphorus in plants (Schenk et al. 2013). In P. pinaster it has been observed that higher availability of phosphorus reduces resin accumulation and increases its release in the needles (Blanch et al. 2012). At high concentrations, monoterpenes have pest repellent and moderate fungicidal properties (Everaerts et al. 2012). This means that MeJA could promote resin release, which has the potential to facilitate plant resistance to a variety of pests.

The upregulated gene network was highly centred, with no separate gene subgroups, indicating that the MeJA treatment triggers the activation of a related gene cascade and a unified response. The downregulated gene network suggests a more general gene expression response that is not focused on one function. In addition, a summary of GO annotations indicate that the expressed genes are more evenly distributed among various functions intended to provide basic functions of the organism. It should be noted that the results do not examine the genes that are similarly expressed in both groups (< 2 times gene expression difference).

Our results show that in samples treated with MeJA, two

weeks after treatment, the increased expression of signal transduction genes can be detected. This suggests that the organism is in an induced state, and that in the event of a pest attack, the plant may respond more rapidly to the infection process or other stress conditions. However, Scots pine as a species has high ecological plasticity and genetic variability even within a single population (Sevik et al. 2010; Salmela et al. 2013), which influences the response of individuals to a variety of factors. As only one *P. sylvestris* clone was used in our experiment, these results need to be replicated or verified using a larger number of individuals from a different population. In addition, further time points would be required to determine the duration of the response to MeJA treatment.

A similar study in *Picea sitchensis*, which investigated gene expression in injured plants affected by insect feeding, showed that several thousand genes are activated in defense responses (Ralph et al. 2006). Expression of similar genes is also evident in our results and indicates that the MeJA treated Scots pine individual had an altered gene expression profile two weeks after the treatment, potentially increasing survival and resistance to pathogen attack.

Acknowledgements

This study was performed within the framework of the Latvian Council of Science project Investigation of molecular defense mechanisms in Scots pine (*Pinus sylvestris* L.) (No. 284/2012). We would like to thank Carl Gunnar Fossdal Norwegian Institute of Bioeconomy Research for assistance with the project.

References

- Ahuja M.R., Neale D.B. 2005. Evolution of genome size in conifers. *Silvae Genet.* 54: 126–137.
- Anders S., Huber W. 2010. Differential expression analysis for sequence count data. *Genome Biol.* 11: R106.
- Asiegbu F.O., Adomas A., Stenlid J. 2005. Conifer root and butt rot caused by *Heterobasidion annosum* (Fr.) Bref. sl. *Molec. Plant Pathol.* 6: 395–409.
- Attaran E., Major I.T., Cruz J.A., Rosa B.A., Koo A.J., Chen J., Kramer D.M., He S. Y., Howe G.A. 2014. Temporal dynamics of growth and photosynthesis suppression in response to jasmonate signalling. *Plant Physiol.* 165: 1302–1314.
- Bilgin D.D., Zavala J.A., Zhu J.I.N., Clough S.J., Ort D.R., DeLucia E.H. 2010. Biotic stress globally downregulates photosynthesis genes. Plant Cell Environ. 33: 1597–1613.
- Blanch J.S., Sampedro L., Llusià J., Moreira X., Zas R., Peñuelas J. 2012. Effects of phosphorus availability and genetic variation of leaf terpene content and emission rate in *Pinus pinaster* seedlings susceptible and resistant to the pine weevil, *Hylobius abietis. Plant Biol.* 14: 66–72.
- Brus D.J., Hengeveld G.M., Walvoort D.J.J., Goedhart P.W., Heidema A.H., Nabuurs G.J., Gunia K. 2011: Statistical mapping of tree species over Europe. *Eur. J. Forest Res.* 131: 145–157.
- Buchanan-Wollaston V., Page T., Harrison E., Breeze E., Lim P.O., Nam H.G., Lin J.F., Wu S.H., Swidzinski J., Ishizaki K., Leaver C.J. 2005. Comparative transcriptome analysis reveals

significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. *Plant J.* 42: 567–585.

- Cohen-Kupiec R., Chet I., Cohen-Kupiec C. R. 1998. The molecular biology of chitin digestion. Curr. Opin. Biotechnol. 9: 270–277.
- Creelman R.A., Mullet J.E. 1997. Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48: 355–381.
- Dubouzet J.G., Donaldson L., Black M.A., McNoe L., Liu V., Lloyd-Jones G. 2014. Heterologous hybridisation to a *Pinus* microarray: profiling of gene expression in *Pinus radiata* saplings exposed to ethephon. *New Zealand J. Forestry Sci.* 44: 21.
- Duff S.M., Sarath G., Plaxton W.C. 1994. The role of acid phosphatases in plant phosphorus metabolism. *Physiol. Plant.* 90: 791–800.
- Everaerts C., Grégoire J.C., Merlin J. 2012. The toxicity of Norway spruce monoterpenes to two bark beetle species and their associates. In: Mattson W.J., Levieux J., Bernard-Dagan C. (eds) *Mechanisms of Woody Plant Defenses Against Insects*. Springer, New York, pp. 335–344.
- Farmer E.E., Ryan C.A. 1990. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. *Proc. Nat. Acad. Sci. USA* 87: 7713–7716.
- Fracetto G.G., Peres L.E., Mehdy M.C., Lambais M.R. 2013. Tomato ethylene mutants exhibit differences in arbuscular mycorrhiza development and levels of plant defense-related transcripts. *Symbiosis* 60: 155–167.
- Franceschi V.R., Krekling T., Christiansen E. 2002. Application of MeJA on *Picea abies* (Pinaceae) stems induces defense-related responses in phloem and xylem. *Am. J. Bot.* 89: 578–586.
- Hammerschmidt R. 1999. Induced disease resistance: how do induced plants stop pathogens? *Physiol. Mol. Plant Pathol.* 55: 77–84.
- Hatfield R., Vermerris W. 2001. Lignin formation in plants. The dilemma of linkage specificity. *Plant Physiol.* 126: 1351–1357.
- Hoth S., Morgante M., Sanchez J. P., Hanafey M.K., Tingey S.V., Chua N.H. 2002. Genome-wide gene expression profiling in *Arabidopsis thaliana* reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant. J. Cell Sci. 115: 4891–4900.
- Hudgins J.W., Christiansen E., Franceschi V.R. 2003. MeJA induces changes mimicking anatomical defenses in diverse members of the Pinaceae. *Tree Physiol.* 23: 361–371.
- Iseli B., Boller T., Neuhaus J.M. 1993. The N-terminal cysteinerich domain of tobacco class I chitinase is essential for chitin binding but not for catalytic or antifungal activity. *Plant Physiol.* 103: 221–226.
- Kovach A., Wegrzyn J.L., Parra G., Holt C., Bruening G.E., Loopstra C.A., Hartigan J., Yandell M., Langley C.H., Korf I., Neale D.B. 2010. The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences. *BMC Genomics* 11: e1.
- Liu Y., Liu M., Li X., Cao B., Ma X. 2014. Identification of differentially expressed genes in leaf of *Reaumuria soongorica* under PEG-induced drought stress by digital gene expression profiling. *PloS One* 9: e94277.
- Lux-Endrich A., Treutter D., Feucht W. 2000. Influence of nutrients and carbohydrate supply on the phenol composition of apple shoot cultures. *Plant Cell Tissue Organ Cult*. 60: 15–21.
- Masón W.L., Alía R. 2000. Current and future status of Scots pine (*Pinus sylvestris* L.) forests in Europe. *Forest Syst.* 9: 317–335.

- Miller B., Madilao L.L., Ralph S., Bohlmann J., 2005. Insectinduced conifer defense. White pine weevil and MeJA induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce. *Plant Physiol.* 137: 369–382.
- Montojo J., Zuberi K., Rodriguez H., Bader G.D., Morris Q. 2014. GeneMANIA: Fast gene network construction and function prediction for Cytoscape. F1000Research 3.
- Morozova O., Marra M.A. 2008. Genomics Applications of nextgeneration sequencing technologies in functional genomics. *Genomics* 92: 255–264.
- Moreira X., Sampedro L. Zas R., 2009. Defensive responses of Pinus pinaster seedlings to exogenous application of methyl jasmonate: concentration effect and systemic response. *Environ. Exp. Bot.* 67: 94–100.
- Passarinho P.A., de Vries S.C. 2002. Arabidopsis chitinases: a genomic survey. *The Arabidopsis Book* 1: e0023.
- Pham T., Chen H., Yu J., Dai L., Zhang R., Vu T. Q.T. 2014. The Differential effects of the blue-stain fungus Leptographium qinlingensis on monoterpenes and sesquiterpenes in the stem of Chinese white pine (*Pinus armandi*) saplings. *Forests* 5: 2730–2749.
- Ralph S G., Yueh H., Friedmann M., Aeschliman D., Zeznik J.A., Nelson C.C., Butterfield Y.S., Kirkpatrick R., Liu J., Jones S.J., Marra M.A., Douglas C.J., Ritland K., Bohlmann J. 2006. Conifer defence against insects: microarray gene expression profiling of Sitka spruce (*Picea sitchensis*) induced by mechanical wounding or feeding by spruce budworms (*Choristoneura occidentalis*) or white pine weevils (*Pissodes strobi*) reveals large-scale changes of the host transcriptome. *Plant Cell Environ*. 29: 1545–1570.
- Richardson D. M., Rundel P. W. 1998. Ecology and biogeography of Pinus: an introduction. In: Richardson D.M. (ed) *Ecology* and Biogeography of Pinus. Cambridge, Cambridge University Press, UK pp. 3–46.
- Rubio-Piña J.A., Zapata-Pérez O. 2011. Isolation of total RNA from tissues rich in polyphenols and polysaccharides of mangrove plants. *Electr. J. Biotechnol.* 14: 11.
- Sahai A.S., Manoch M.S. 1993. Chitinases of fungi and plants : their involvement in morphogenesis and host-parasite interaction. *FEMS Microbiol. Rev.* 11: 317–338.
- Salmela M.J., Cavers S., Cottrell J.E., Iason G.R., Ennos R.A. 2013. Spring phenology shows genetic variation among and within populations in seedlings of Scots pine (*Pinus sylvestris* L.) in the Scottish Highlands. *Plant Ecol. Divers*. 6: 523–536.
- Schenk G., Mitić N., Hanson G.R., Comba P. 2013. Purple acid phosphatase: A journey into the function and mechanism of a

colorful enzyme. Coord. Chem. Rev. 257: 473-482.

- Schlumbaum A., Mauch F., Vögeli U., Boller, T. 1986. Plant chitinases are potent inhibitors of fungal growth. *Nature* 324: 365–367.
- Sevik H., Ayan S., Turna I., Yahyaoglu Z. 2010. Genetic diversity among populations in Scotch pine (*Pinus sylvestris* L.) seed stands of Western Black Sea Region in Turkey. *African J. Biotechnol.* 9: 7266–7272.
- Shinshi H., Neuhaus J., Ryals J., Meins F. 1990. Structure of a tobacco endochitinase gene: evidence that different chitinase genes can arise by transposition of sequences encoding a cysteine-rich domain. *Plant Mol. Biol.* 14: 35–368.
- Su Y., Xu L., Wang S., Wang Z., Yang Y., Chen Y., Que Y. 2015. Identification, phylogeny, and transcript of chitinase family genes in sugarcane. *Sci. Rep.* 5: srep10708.
- Smith K. T. 2015. Compartmentalization, resource allocation, and wood quality. *Curr. Forestry Rep.* 1: 8–15.
- Sun H., Paulin L., Alatalo E., Asiegbu F.O. 2011. Response of living tissues of *Pinus sylvestris* to the saprotrophic biocontrol fungus *Phlebiopsis gigantea*. *Tree Physiol*. 31: 438–451.
- Šķipars V., Krivmane B., Ruņģis D. 2011. Thaumatin–like protein gene copy number variation in Scots pine (*Pinus sylvestris*). *Environ. Exp. Biol.* 9:75–81.
- Vijayan P., Shockey J., Lévesque C.A., Cook R.J. 1998. A role for jasmonate in pathogen defense of Arabidopsis. *Proc. Nat. Acad. Sci.* USA 95: 7209–7214.
- Wachowiak W., Trivedi U., Perry A., Cavers S. 2015. Comparative transcriptomics of a complex of four European pine species. *BMC Genomics* 16: 234.
- Whetten R., Sederoff R., 1995. Lignin biosynthesis. *Plant Cell* 7: 1001.
- Wink M. 1988. Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. *Theor. Appl. Genet.* 75: 225–233.
- Yang G., Zhou R., Tang T., Shi S. 2008. Preparative biochemistry and biotechnology simple and efficient isolation of highquality total RNA from *Hibiscus tiliaceus*, a mangrove associate and its relatives. *Prep. Biochem. Biotechnol.* 38: 257–264.
- Yaqoob N., Yakovlev I. A., Krokene P., Kvaalen H., Solheim H., Fossdal C.G. 2012. Defence-related gene expression in bark and sapwood of Norway spruce in response to *Heterobasidion parviporum* and methyl jasmonate. *Physiol. Mol. Plant Pathol.* 77: 10-16.
- Zas R., Björklund N., Nordlander G., Cendán C., Hellqvist C., Sampedro L. 2014. Exploiting jasmonate-induced responses for field protection of conifer seedlings against a major forest pest, *Hylobius abietis*. Forest Ecol. Manage. 313: 212–223.

Reference sequence Sm3 Sm4 Sm5 Sm6 Sm7 logFC PValue_ Gene annotation Organism Accession No. fdr 3.68E-07 Eukaryotic-type carbonic KEH16352.1 comp43346_c0_seq1 250 96 0 0 0 -9.62 Medicago anhydrase truncatula comp54078_c0_seq1 91 60 0 0 0 -8.49 1.68E-07 Uninformative comp57289_c0_seq1 441 289 2 0 0 -8.37 0.01 Putative acid phosphatase Pinus pinaster CAC84485.1 Alpha terpineol AFU73861.1 comp20846_c0_seq1 144 190 1 0 0 -8.36 2.62E-06 Pinus contorta /1,8-cineole synthase comp53497_c0_seq2 0 89 0 0 0 -8.09 0.01 Protein HOTHEAD Gossypium KHG26487.1 arboreum 2.62E-06 comp32018_c0_seq1 85 119 0 0 1 -7.91 Alpha terpineol Pinus contorta AFU73861.1 /1,8-cineole synthase comp55229_c0_seq9 47 59 0 0 0 -7.8 0.01 Chalcone synthase Pinus pinaster AAP85249.1 0 0 -7.64 Isopentenyl diphosphate Pinus taeda ACU56978.1 comp49218_c0_seq1 45 36 0 3.68E-07 isomerase comp53497_c0_seq1 0 0 -7.46 0.01 Protein HOTHEAD Gossypium KHG26487.1 0 56 0 arboreum comp53815_c0_seq5 -7.34 2.62E-06 Putative Lupinus luteus CAD12837.1 38 29 0 0 0 metallophosphatase comp35142_c0_seq1 38 22 -7.14 3.12E-06 Cinnamyl alcohol Larrea tridentata AHA90802.1 0 0 0 acyltransferase 1 comp1651716_c0_seq1 -7.08 AFU90898.1 16 34 0 0 0 0 Jasmonate ZIM domain-Sonneratia caseolaris containing protein comp48680_c0_seq2 5 39 0 0 0 -7.04 0 AFV52381.1 Laccase Picea abies -7 0.01 XP_010108951.1 comp54849_c0_seq17 89 70 0 0 Benzyl alcohol Morus notabilis 1 O-benzoyltransferase comp210649_c0_seq1 25 20 0 0 -6.78 8.21E-06 Auxin-responsive family Pseudotsuga ACH60220.1 0 protein macrocarpa 0.01 Protein HOTHEAD comp53497_c0_seq3 0 -6.75 Gossypium KHG26487.1 0 80 0 1 arboreum comp53560_c0_seq1 0 39 0 0 0 -6.75 0.04 Glyoxal oxidase-related Theobroma cacao XP_007017716.1 protein Serine-type endopeptidase comp50861_c0_seq1 23 72 0 1 0 -6.75 0 Arabidopsis NP_177351.1 inhibitor thaliana comp47417_c0_seq1 42 4 0 0 0 -6.6 0 Isoeugenol synthase 1 Glycine soja KHN26455.1 comp53815_c0_seq1 36 6 0 0 0 -6.48 0 Purple acid phosphatase Acacia mangium BAO45898.1 0 2 3.68E-07 Pathogen-inducible alphacomp56578_c0_seq1 74 52 0 -6.42 Nicotiana AAG59584.1 dioxygenase attenuata comp47930_c0_seq1 -6.41 0.01 Uninformative 52 34 0 1 0 10 0 -6.32 XP_010102947.1 comp243640_c0_seq1 26 0 0 Cytochrome P450 71A1 Morus notabilis 0 AEF59005.1 comp54314_c0_seq1 13 53 0 0 1 -6.26 0 Class I chitinase Pinus contorta comp52953_c0_seq1 52 21 0 0 -6.23 7.20E-06 Purple acid phosphatase Acacia mangium BAO45898.1 1 comp53900_c0_seq3 0 28 0 0 0 -6.21 0.05 Kunitz type trypsin Medicago KEH38529.1 inhibitor truncatula comp54934_c0_seq17 -6.19 3 23 0 0 0 0.01 Uninformative comp18977_c0_seq3 128 677 4 28 0 -6.13 0.02 Proline-rich protein Pinus taeda AAF75825.1 Protein-PII comp949065_c0_seq1 24 6 0 0 0 -6.1 0 Donghicola WP_028093236.1 uridylyltransferase xiamenensis comp52455_c0_seq6 28 -6.08 0.01 Amidase WP_008080115.1 5 0 0 0 Pseudomonas sp. comp54934_c0_seq15 5 20 0 0 0 -6.07 0.01 Uninformative comp1463951_c0_seq1 12 14 0 0 0 -6.06 0 Sulfate/thiosulfate import Theobroma cacao XP_007049639.1 ATP-binding protein cysA comp51296_c0_seq1 5 73 0 2 0 -6.05 0 Glycoside hydrolase family Heterobasidion XP_009545841.1

71 protein

irregulare

Appendix 1. Annotation of sequences differentially expressed between MeJA treated (Sm3, Sm4) and control (Sm5, Sm6, Sm7) libraries

Reference sequence	Sm3	Sm4	Sm5	Sm6	Sm7	logFC	PValue_ fdr	Gene annotation	Organism	Accession No.
comp107485_c0_seq1	14	12	0	0	0	-5.99	0	S-adenosyl-L- methionine-dependent methyltransferases superfamily protein	Theobroma cacao	XP_007048464.1
comp35518_c0_seq1	31	0	0	0	0	-5.98	0.05	Neutral invertase	Viscum album subsp. album	ABF50710.1
comp375741_c0_seq1	26	2	0	0	0	-5.92	0.01	1-deoxy-D-xylulose 5-phosphate synthase type II	Picea abies	ABS50520.1
comp55263_c1_seq19	2	18	0	0	0	-5.9	0.03	Pentatricopeptide (PPR) repeat protein	Medicago truncatula	KEH25607.1
comp54934_c0_seq10	2	20	0	0	0	-5.89	0.02	Uninformative		
comp494061_c0_seq1	4	18	0	0	0	-5.86	0.01	Chromatin assembly factor 1 subunit A	Theobroma cacao	XP_007049998.1
comp54849_c0_seq11	49	23	1	0	0	-5.81	0.04	Benzyl alcohol O-benzoyltransferase	Morus notabilis	XP_010108951.1
comp52965_c0_seq1	12	12	0	0	0	-5.79	0.02	Inositol-pentakisphosphate 2-kinase-like protein	Medicago truncatula	KEH36181.1
comp49393_c0_seq1	32	85	0	0	4	-5.75	8.36E-05	Clavaminate synthase-like protein	Aegilops tauschii	EMT27634.1
comp1228066_c0_seq1	53	29	1	0	1	-5.68	1.25E-05	GDSL-like lipase/ Acylhydrolase superfamily protein, putative isoform 1	Theobroma cacao	XP_007027683.1
comp54934_c0_seq16	6	37	0	0	1	-5.65	0.01	Uninformative		
comp27055_c0_seq1	48	32	2	0	0	-5.62	7.65E-06	1-deoxy-D-xylulose 5-phosphate synthase type II	Picea abies	ABS50520.1
comp52828_c0_seq2	2	33	0	0	1	-5.57	0.01	Heat shock protein	Ammopiptanthus mongolicus	AFC01202.1
comp36780_c0_seq1	36	14	0	1	0	-5.57	0.04	Jasmonate-zim-domain protein 1	Theobroma cacao	XP_007012594.1
comp40675_c0_seq2	10	10	0	0	0	-5.57	0.02	ABC-2 and Plant PDR ABC-type transporter family protein isoform 5	Theobroma cacao	XP_007024298.1
comp45469_c0_seq4	5	12	0	0	0	-5.53	0.02	Putative LRR receptor-like serine/threonine-protein kinase	Morus notabilis	XP_010092221.1
comp54143_c1_seq4	10	8	0	0	0	-5.46	0	Uninformative		
comp42728_c1_seq1	6	10	0	0	0	-5.37	0.03	Sn1-specific diacylglycerol lipase alpha	Gossypium arboreum	KHG05530.1
comp431420_c0_seq1	26	12	0	0	1	-5.34	0	PTI1-like tyrosine-protein kinase	Glycine soja	KHN31557.1
comp44918_c0_seq1	16	2	0	0	0	-5.32	0.03	Uninformative		
comp68888_c0_seq1	12	40	0	0	2	-5.29	0	Thaumatin-like protein	Pinus sylvestris	AHH02776.1
comp47732_c0_seq1	0	55	0	2	1	-5.28	0.03	Asparagine synthetase	Pinus pinaster	ADU02856.1
comp40057_c0_seq1	4	10	0	0	0	-5.26	0.03	Uninformative		
comp19537_c0_seq1	6	9	0	0	0	-5.24	0.05	Uninformative		
comp39760_c0_seq1	42	18	2	0	0	-5.23	0	Cinnamoyl CoA reductase	Arabidopsis thaliana	AAM62475.1
comp46327_c0_seq1	31	6	0	0	1	-5.19	0	Uuninformative		
comp50304_c0_seq1	9	49	0	2	1	-5.19	0	Response to low sulfur 3	Theobroma cacao	XP_007039253.1
comp23260_c0_seq1	14	2	0	0	0	-5.19	0.03	Uninformative		
comp52065_c1_seq6	9	6	0	0	0	-5.17	0.01	Tetratricopeptide repeat (TPR)-like superfamily protein isoform 1	Theobroma cacao	XP_007036762.1

Reference sequence	Sm3	Sm4	Sm5	Sm6	Sm7	logFC	PValue_ fdr	Gene annotation	Organism	Accession No.
comp54849_c0_seq5	47	68	1	5	0	-5.17	0.03	Benzoyl CoA benzoic acid benzoyltransferase	Verbena x hybrida	BAE72881.1
comp46741_c0_seq1	81	70	2	0	5	-5.14	1.08E-05	Arogenate dehydratase 3	Petunia x hybrida	ACY79504.1
comp54246_c0_seq2	12	3	0	0	0	-5.13	0.02	NBS/LRR	Pinus taeda	AAM28912.1
comp54934_c0_seq7	10	21	1	0	0	-5.12	0	Uninformative		
comp55507_c0_seq1	50	102	0	0	9	-5.11	0	Class III peroxidase PSYP1	Pinus sylvestris	AAG02215.1
comp49725_c0_seq6	5	8	0	0	0	-5.07	0.03	Calmodulin binding protein	Ricinus communis	XP_002517079.1
comp45618_c0_seq1	8	5	0	0	0	-4.98	0.01	Putative truncated TIR- NBS-LRR protein	Pinus monticola	ADW94528.1
comp25629_c0_seq1	26	30	0	1	2	-4.92	6.15E-05	JAZ10	Gossypium barbadense	AJT58397.1
comp184252_c0_seq1	6	18	0	0	1	-4.91	0.01	C2H2-like zinc finger protein	Theobroma cacao	XP_007021715.1
comp49872_c0_seq2	5	6	0	0	0	-4.81	0.05	F-box/LRR-repeat protein	Pediculus humanus corporis	XP_002429423.1
comp37005_c0_seq1	5	6	0	0	0	-4.79	0.04	Plant IF-like protein	Medicago truncatula	KEH43124.1
comp39224_c0_seq1	13	17	1	0	0	-4.78	0.05	Peroxidase	Picea abies	CAH10839.1
comp54766_c0_seq16	7	4	0	0	0	-4.75	0.04	Progesterone 5-beta- reductase	Gomphocarpus fruticosus	ADG56546.1
comp53815_c0_seq4	31	10	0	0	2	-4.75	0	Purple acid phosphatase	Acacia mangium	BAO45898.1
comp407480_c0_seq1	33	8	0	2	0	-4.74	0	ABC transporter G family member 36	Gossypium arboreum	KHG28037.1
comp50861_c0_seq2	21	54	1	3	1	-4.71	0.02	Serine-type endopeptidase inhibitor	Arabidopsis lyrata subsp. lyrata	XP_002887410.1
comp49971_c1_seq1	27	19	0	3	0	-4.66	3.17E-05	PAR1 protein	Theobroma cacao	XP_007026832.1
comp54934_c0_seq6	3	29	0	0	2	-4.66	0.05	Uninformative		
comp52407_c0_seq1	104	76	1	2	10	-4.62	0	Putative flavoprotein- containing polyamine oxidase	Pinus sylvestris	ADQ37306.1
comp48744_c0_seq1	22	16	1	0	1	-4.6	0	Dehydrodolichyl diphosphate synthase 6	Zea mays	ACG35019.1
comp35804_c0_seq1	26	10	0	1	1	-4.58	0	Helix-loop-helix DNA- binding domain containing protein	Or <i>yza sativa</i> Japonica Group	ABF97395.1
comp53918_c0_seq1	6	33	1	2	0	-4.57	0.01	PREDICTED: pinin	Cucumis melo	XP_008453065.1
comp51065_c0_seq1	26	11	0	2	0	-4.55	0.01	Peroxidase	Picea abies	CAD92856.1
comp18977_c0_seq4	100	102	1	21	0	-4.54	0.03	Proline-rich protein	Pinus taeda	AAF75825.1
comp18977_c0_seq1	120	76	0	20	1	-4.54	0.04	Proline-rich protein	Pinus taeda	AAF75825.1
comp54314_c0_seq4	11	41	0	5	0	-4.49	0.01	Class I chitinase	Pinus contorta	AEF59005.1
comp50147_c0_seq3	67	70	4	0	6	-4.47	0	Pyrroline-5-carboxylate synthetase isoform 3	Theobroma cacao	XP_007009201.1
comp52043_c1_seq2	54	99	6	5	0	-4.47	0.02	Embryo-abundant protein	Picea glauca	AAB01567.1
comp54813_c0_seq2	90	375	7	57	0	-4.46	0.05	PR-1	Solanum torvum	BAB78476.1
comp18977_c0_seq2	127	95	1	25	0	-4.44	0.04	Proline-rich protein	Pinus taeda	AAF75825.1
comp51867_c0_seq3	29	6	1	0	1	-4.44	0.01	Beta-lactamase	Aquimarina macrocephali	WP_024768563.1
comp40759_c0_seq1	42	37	5	0	0	-4.43	0	Uninformative		
comp39422_c0_seq1	18	3	0	0	1	-4.39	0.03	Pathogenesis-related homeodomain protein	Medicago truncatula	XP_003595073.1
comp236525_c0_seq1	33	2	0	0	2	-4.38	0.02	Zinc transporter 11 -like protein	Gossypium arboreum	KHG22377.1
comp38640 c1 seal	5	28	0	0	3	-4.32	0.02	Putative S-acyltransferase	Glycine soja	KHN33780.1

Reference sequence	Sm3	Sm4	Sm5	Sm6	Sm7	logFC	PValue_ fdr	Gene annotation	Organism	Accession No.
comp31109_c0_seq1	10	8	0	0	1	-4.32	0	Pentatricopeptide repeat- containing protein, putative isoform 1	Theobroma cacao	XP_007010632.1
comp52761_c0_seq3	148	58	0	25	1	-4.31	0.01	PDR1	Picea abies	ADP55080.1
comp47422_c0_seq1	10	18	2	0	0	-4.29	0.02	Primary amine oxidase isoform 2	Theobroma cacao	XP_007034733.1
comp53815_c0_seq2	29	5	2	0	0	-4.28	0.02	Purple acid phosphatase	Acacia mangium	BAO45898.1
comp52274_c3_seq6	16	3	0	0	1	-4.27	0.05	L-type lectin-domain receptor kinase S.4	Medicago truncatula	KEH22964.1
comp48217_c0_seq1	30	86	0	12	5	-4.27	0	Putative peptide/nitrate transporter	Morus notabilis	XP_010088558.1
comp49431_c0_seq1	19	9	0	0	2	-4.24	0	Double-stranded RNA- binding protein 5	Morus notabilis	XP_010110932.1
comp54964_c0_seq3	4	26	0	0	3	-4.23	0.03	Major facilitator superfamily protein	Theobroma cacao	XP_007028238.1
comp54087_c0_seq1	14	4	0	0	1	-4.22	0.01	Dynein beta chain, ciliary	Gossypium arboreum	KHG15580.1
comp55592_c0_seq3	23	14	1	0	2	-4.19	0	Serine/threonine protein kinase isolog	Arabidopsis thaliana	AAM20520.1
comp54494_c0_seq1	8	16	0	0	2	-4.19	0.01	C2H2-like zinc finger protein	Theobroma cacao	XP_007045432.1
comp45452_c0_seq1	16	19	0	0	3	-4.14	0.01	LOB domain protein 1	Solanum demissum	AAT40528.1
comp3590_c0_seq1	8	8	0	0	1	-4.13	0.02	Uninformative		
comp55572_c0_seq8	10	6	1	0	0	-4.11	0.02	Pentatricopeptide repeat- containing -like protein	Gossypium arboreum	KHG29369.1
comp53352_c0_seq2	10	6	1	0	0	-4.1	0.02	SWI/SNF complex subunit SMARCC2	Medicago truncatula	XP_003602787.1
comp14610_c0_seq1	79	14	1	2	6	-4.05	0	Triacylglycerol lipase	Ricinus communis	XP_002513514.1
comp29578_c0_seq1	12	10	0	0	2	-3.98	0.01	Cytochrome P450	Medicago truncatula	XP_003607255.1
comp40102_c0_seq1	54	51	8	0	1	-3.98	0	Dihydroflavonol-4- reductase	Ginkgo biloba	AGR34043
comp43206_c0_seq1	16	8	2	0	0	-3.98	0.01	Chromatin assembly factor 1 subunit A-B	Gossypium arboreum	KHG13021.1
comp38971_c0_seq2	10	13	2	0	0	-3.95	0.03	Plant neutral invertase family protein isoform 1	Theobroma cacao	XP_007041939.1
comp54755_c0_seq16	56	60	2	14	1	-3.91	0.05	2-methyl-3-buten-2-ol synthase	Pinus greggii	AFJ73549.1
comp42778_c0_seq1	10	16	0	0	3	-3.86	0.01	Lipase	Medicago truncatula	KEH44038.1
comp25525_c0_seq1	24	10	0	4	0	-3.85	0	JAZ10	Gossypium barbadense	AJT58397.1
comp44305_c0_seq1	11	22	1	2	1	-3.83	0	Putative quinone oxidoreductase-like protein	Gardenia jasminoides	AIX10953.1
comp49135_c0_seq2	17	17	3	0	0	-3.82	0.04	Antimicrobial peptide 1	Pinus sylvestris	AAL05052.1
comp45534_c0_seq1	159	183	17	18	8	-3.79	0.01	Phenylalanine ammonia- lyase	Pinus sylvestris	AAL74331.1
comp16981_c0_seq1	7	15	0	3	0	-3.78	0.02	Heavy metal transport/ detoxification superfamily protein	Theobroma cacao	XP_007050858.1
comp569_c0_seq1	16	31	2	0	4	-3.78	0.01	WRKY family transcription factor	Medicago truncatula	KEH20878.1
comp26588_c0_seq1	12	6	0	2	0	-3.72	0	Cellulose-synthase-like C12	Theobroma cacao	XP_007018423.1

Reference sequence	Sm3	Sm4	Sm5	Sm6	Sm7	logFC	PValue_ fdr	Gene annotation	Organism	Accession No.
comp54636_c0_seq21	8	4	0	1	0	-3.72	0.04	Putative reverse transcriptase	Arachis hypogaea	ACN78497.1
comp52692_c0_seq1	8	4	0	0	1	-3.72	0.02	Similar to RPS-2 disease resistance protein	Arabidopsis thaliana	AAK96709.1
comp51409_c0_seq1	49	17	1	0	7	-3.7	0.01	Cytochrome P450 71A1	Morus notabilis	XP_010099912.1
comp34441_c0_seq1	14	16	0	2	2	-3.7	0	R2R3-MYB transcription factor MYB11	Picea glauca	ABD60286.2
comp55437_c0_seq1	565	687	31	177	35	-3.68	0	Carbonic anhydrase	Ricinus communis	XP_002529418.1
comp47738_c0_seq1	18	14	3	1	0	-3.66	0.01	Laccase 1	Theobroma cacao	XP_007036761.1
comp52474_c0_seq10	31	4	0	0	4	-3.65	0.05	Plant-specific domain TIGR01589 family protein	Medicago truncatula	XP_003621784.1
comp45295_c0_seq1	161	55	11	10	5	-3.64	0.01	Cinnamoyl-CoA reductase 1	Betula platyphylla	AIX92145.1
comp44346_c0_seq2	5	6	0	0	1	-3.63	0.04	PREDICTED: uncharacterized protein ycf45 isoform X1	Nicotiana tomentosiformis	XP_009631320.1
comp77850_c0_seq1	26	8	2	0	2	-3.61	0.01	myb-like HTH transcriptional regulator family protein	Arabidopsis thaliana	NP_973385.1
comp32428_c1_seq1	631	385	39	126	17	-3.61	0	3-deoxy-D-arabino- heptulosonate 7-phosphate synthase	Picea abies	AET43997.1
comp52474_c0_seq1	4	53	3	3	4	-3.6	0.03	Plant-specific domain TIGR01589 family protein	Medicago truncatula	XP_003621784.1
comp46505_c1_seq1	13	5	1	0	1	-3.6	0.02	DNA repair protein	Aphanomyces invadans	XP_008869217.1
comp54314_c0_seq5	13	43	0	6	4	-3.58	0.01	Class I chitinase	Pinus contorta	AEF59005.1
comp55573_c0_seq5	198	77	7	5	28	-3.58	0.01	Serine carboxypeptidase- like 20	Morus notabilis	XP_010095610.1
comp48058_c0_seq1	14	10	2	0	1	-3.58	0.02	TPA: calmodulin-binding heat-shock protein	Zea mays	DAA39600.1
comp52473_c0_seq1	17	8	1	0	2	-3.58	0.01	Dormancy/auxin associated-like protein	Picea sitchensis	ADP94909.1
comp42341_c0_seq1	52	32	5	0	6	-3.56	0	Acireductone dioxygenase family protein	Populus trichocarpa	XP_002311641.1
comp4637_c0_seq1	21	8	0	2	2	-3.55	0.01	ABC-2 and Plant PDR ABC-type transporter family protein isoform 1	Theobroma cacao	XP_007024294.1
comp37103_c0_seq1	13	14	0	2	2	-3.52	0.01	PREDICTED: pollen- specific leucine-rich repeat extensin-like protein 3	Brassica rapa	XP_009106541.1
comp32319_c0_seq1	583	320	66	29	13	-3.52	0.02	Bark storage protein A	Glycine soja	KHN20661.1
comp404334_c0_seq1	10	6	0	1	1	-3.49	0.02	Putative TIR-NBS-LRR protein	Pinus monticola	ADW94527.1
comp46803_c0_seq3	10	6	0	0	2	-3.44	0.05	Uninformative		
comp55665_c0_seq12	14	8	0	0	3	-3.41	0.05	Glutaredoxin	Cucumis sativus	AGX01496.1
comp52043_c1_seq1	11	30	2	3	2	-3.4	0.03	Embryo-abundant protein	Picea glauca	AAB01567.1
comp42931_c0_seq1	49	32	9	0	1	-3.4	0.01	Phospholipase A1- Igamma1	Arabidopsis thaliana	NP_849603.1
comp47676_c0_seq1	32	44	4	2	7	-3.4	0	Phospholipase A1- Igamma3	Morus notabilis	XP_010102366.1
comp54725_c0_seq10	8	17	1	2	1	-3.39	0.03	S-adenosyl-L- methionine-dependent methyltransferases superfamily protein	Theobroma cacao	XP_007048464.1

Reference sequence	Sm3	Sm4	Sm5	Sm6	Sm7	logFC	PValue_ fdr	Gene annotation	Organism	Accession No.
comp46913_c0_seq1	15	5	0	2	1	-3.38	0.02	Plasma membrane-like protein isoform 1	Theobroma cacao	XP_007051655.1
comp54700_c0_seq1	20	28	0	0	9	-3.36	0.03	Ethylene response factor 14	Actinidia deliciosa	ADJ67443.1
comp54817_c0_seq1	347	634	33	167	48	-3.35	0.01	Class VII chitinase	Pinus contorta	AEF59008.1
comp41510_c0_seq1	16	13	1	2	2	-3.34	0.01	Protein-tyrosine phosphatase mitochondrial 1-like protein	Morus notabilis	XP_010104857.1
comp53534_c0_seq5	10	14	2	2	0	-3.34	0.03	Ramosal enhancer locus 2 protein	Phacelurus digitatus	AFJ42403.1
comp48963_c0_seq1	18	13	2	0	3	-3.33	0.01	Surfeit locus 1 cytochrome c oxidase biogenesis protein isoform 1	Theobroma cacao	XP_007036878.1
comp54624_c1_seq2	24	44	1	6	8	-3.29	0.01	NADH dehydrogenase subunit 7	Cycas taitungensis	YP_001661405.1
comp36636_c1_seq1	30	12	2	3	2	-3.28	0.01	Transmembrane protein 184A	Glycine soja	KHN08579.1
comp49034_c0_seq1	249	183	14	62	22	-3.27	0	Lipoxygenase	Malus domestica	AGI16408.1
comp28007_c0_seq1	70	38	2	6	13	-3.26	0	Nodulation-signaling pathway 1 protein	Malus domestica	NP_001287803.1
comp45321_c0_seq2	16	15	0	5	1	-3.25	0	Anthocyanidin reductase	Ginkgo biloba	AAU95082.1
comp51062_c0_seq1	9	23	2	5	0	-3.23	0.03	Blue copper protein precursor	Zea mays	NP_001149787.1
comp51256_c0_seq1	54	21	4	4	5	-3.23	0	MYBPA1 protein	Vitis vinifera	NP_001268160.1
comp51857_c0_seq1	21	8	2	2	1	-3.22	0.01	E3 ubiquitin-protein ligase RHA1B	Morus notabilis	XP_010112947.1
comp47291_c0_seq1	83	27	8	9	0	-3.2	0.01	ATP-binding cassette transporter	Selaginella moellendorffii	XP_002991414.1
comp40886_c0_seq1	20	20	0	8	1	-3.2	0	Beta-glucosidase	Medicago truncatula	XP_003636137.1
comp37546_c0_seq1	709	1526	208	270	40	-3.16	0.04	Nicotianamine synthase	Lotus japonicus	BAH22562.1
comp42663_c0_seq1	12	10	2	0	2	-3.11	0.03	Histone-lysine N-methyltransferase ASHH1	Glycine soja	KHN46399.1
comp35349_c0_seq1	56	18	3	4	7	-3.11	0	Zeatin O-glucosyltransferase	Glycine soja	KHN07349.1
comp46467_c0_seq1	6	27	0	6	4	-3.1	0.05	Protein HOTHEAD	Gossypium arboreum	KHG26488.1
comp39845_c0_seq1	22	41	6	2	5	-3.08	0.02	Class VII chitinase	Pinus contorta	AEF59007.1
comp53013_c0_seq1	10	10	0	0	4	-3.06	0.04	Sterile alpha motif domain- containing protein	Theobroma cacao	XP_007023327.1
comp51961_c0_seq2	16	22	4	2	2	-2.99	0.02	Histone-lysine N-methyltransferase SETD1A	Theobroma cacao	XP_007048538.1
comp46618_c0_seq2	123	148	7	74	6	-2.98	0.02	Thiazole synthase	Gossypium arboreum	KHG00545.1
comp26013_c0_seq1	13	6	1	2	1	-2.92	0.03	R2R3-MYB transcription factor MYB9	Picea glauca	ABQ51225.1
comp49020_c0_seq2	239	183	23	99	12	-2.91	0.02	Chitinase 2	Glycine soja	KHN30221.1
comp44677_c0_seq1	75	22	3	11	10	-2.89	0.02	Adenine nucleotide alpha hydrolases-like superfamily protein	Theobroma cacao	XP_007044293.1
comp16765_c0_seq1	15	4	1	2	1	-2.89	0.05	TPX2 protein family	Theobroma cacao	XP_007032694.1
comp41158_c0_seq1	16	24	3	2	5	-2.87	0.02	Uninformative		
comp53914_c0_seq1	18	34	0	14	4	-2.87	0.02	LOB domain protein	Medicago truncatula	XP_003597159.1

Reference sequence	Sm3	Sm4	Sm5	Sm6	Sm7	logFC	PValue_	Gene annotation	Organism	Accession No.
							fdr			
comp53386_c0_seq1	19	23	4	0	6	-2.79	0.05	Caffeic acid ortho- methyltransferase	Pinus radiata	AAD24001.1
comp242031_c0_seq1	12	4	0	4	0	-2.78	0.03	Retrotransposon protein	Oryza sativa Japonica Group	ABA99600.2
comp49900_c0_seq1	10	10	0	2	3	-2.78	0.05	Nucleolar protein gar2- related isoform 2	Theobroma cacao	XP_007028895.1
comp52440_c0_seq1	58	23	5	5	10	-2.77	0.01	Cytochrome P450	Gossypium arboreum	KHG08008.1
comp54305_c0_seq10	25	11	2	3	4	-2.75	0.02	Putative potassium transporter/channel	Arabidopsis thaliana	BAC42897
comp54748_c0_seq12	14	18	3	6	1	-2.66	0.04	RING/U-box superfamily protein	Theobroma cacao	XP_007018124.1
comp45543_c0_seq2	59	17	6	10	4	-2.62	0.01	Lanatoside 15'-O-acetylesterase	Digitalis lanata	AAY42522.1
comp38572_c0_seq1	134	66	11	42	11	-2.6	0.02	Clavaminate synthase-like protein	Arabidopsis thaliana	NP_188773.1
comp55534_c0_seq33	170	99	16	63	14	-2.59	0.03	GCR2-like 1	Theobroma cacao	XP_007047870.1
comp51584_c0_seq1	129	91	6	55	20	-2.58	0.04	ABC-2 and Plant PDR	Theobroma cacao	XP_007024294.1
· i								ABC-type transporter family protein isoform 1		_
comp52761_c0_seq1	39	40	10	13	3	-2.52	0.04	PDR1	Picea abies	ADP55080.1
comp55358_c0_seq23	19	26	2	9	5	-2.5	0.02	Glutamate decarboxylase	Pinus pinaster	ABA18653.1
comp54745_c1_seq1	34	22	4	5	9	-2.47	0.02	PPPDE peptidase domain- containing 2	Gossypium arboreum	KHG00551.1
comp38121_c0_seq1	20	11	0	7	4	-2.46	0.03	AT-hook motif nuclear localized protein 20	Theobroma cacao	XP_007035040.1
comp46420_c0_seq1	36	28	2	14	9	-2.44	0.01	Pleckstrin homology domain-containing family M member 3	Morus notabilis	XP_010087674.1
comp51011_c0_seq2	20	9	2	6	2	-2.4	0.03	Uninformative		
comp49687_c0_seq1	59	33	8	8	16	-2.26	0.04	Uninformative		
comp52634_c0_seq1	49	28	6	26	5	-2.25	0.03	3-dehydroquinate dehydratase/shikimate 5-dehydrogenase	Juglans regia	AAW65140.1
comp43649_c0_seq1	56	26	10	8	10	-2.25	0.05	IAA-leucine resistant-like gene 6 isoform 1	Theobroma cacao	XP_007019095.1
comp31662_c0_seq1	43	41	7	17	12	-2.21	0.03	Ribulose-5-phosphate-3- epimerase	Ricinus communis	XP_002509539.1
comp50798_c0_seq1	48	46	11	20	12	-2.13	0.04	Putative serine/threonine- protein kinase WNK11	Glycine soja	KHN43812.1
comp47976_c0_seq1	62	33	6	21	16	-2.08	0.04	Protein ETHYLENE INSENSITIVE 3	Morus notabilis	XP_010106128.1
comp54938_c0_seq1	7	2	14	75	29	2.65	0.03	Cobalamin binding protein	Desulfosporosinus meridiei	WP_014903849.1
comp19487_c0_seq1	10	2	28	88	48	2.86	0.01	Zinc-binding protein	Cryptomeria japonica	BAE92295.1
comp54809_c0_seq5	7	2	19	118	38	3.15	0.04	Alpha-mannosidase	Pyrus x bretschneideri	AGR44468.1
comp50587_c0_seq1	4	0	7	80	9	3.44	0.05	30S ribosomal protein S1	Glycine soja	KHN23663.1
comp45265_c0_seq2	0	2	9	27	13	3.47	0.04	F-box/kelch-repeat protein	Morus notabilis	XP_010090191.1
comp62062_c0_seq1	4	0	15	74	12	3.52	0.02	Rhodanese/Cell cycle control phosphatase superfamily protein	Theobroma cacao	XP_007037783.1
comp556453_c0_seq1	3	0	16	42	17	3.61	0.02	Pleiotropic drug resistance 11	Theobroma cacao	XP_007023609.1

Reference sequence	Sm3	Sm4	Sm5	Sm6	Sm7	logFC	PValue_ fdr	Gene annotation	Organism	Accession No.
comp32378_c0_seq1	2	2	10	85	19	3.64	0.01	ATP-dependent Clp protease proteolytic subunit	Pinus thunbergii	NP_042379.1
comp54841_c0_seq18	2	1	9	77	10	3.64	0.04	NBS/LRR	Pinus taeda	AAM28912.1
comp47096_c0_seq1	2	0	13	43	6	3.71	0.03	Pentatricopeptide repeat- containing protein	Ricinus communis	XP_002511505.1
comp42175_c0_seq1	0	3	13	76	19	3.81	0.03	Cytochrome P450 78A3	Morus notabilis	XP_010100198.1
comp52935_c0_seq2	2	0	12	40	12	3.81	0.02	Nitrate transporter	Cucumis sativus	AFR11354.1
comp70039_c0_seq1	2	2	4	134	8	3.83	0.05	Regulator of G-protein signaling	Chara braunii	AHB52760.1
comp55154_c0_seq1	2	0	10	58	5	3.87	0.03	Myosin heavy chain- related	Theobroma cacao	XP_007041107.1
comp52063_c0_seq8	2	0	11	44	14	3.89	0.02	Phosphate transporter 1,4	Theobroma cacao	XP_007050310.1
comp43157_c0_seq1	2	0	13	64	7	3.9	0.05	Clavata-like receptor	Picea glauca	ABF73316.1
comp49546_c1_seq1	2	0	8	64	6	3.92	0.04	Putative AT-hook DNA- binding protein	Oryza sativa Japonica Group	BAD10063.1
comp55194_c0_seq1	3	2	13	145	40	3.93	0.01	Too large		
comp49025_c0_seq3	1	0	8	18	9	3.93	0.02	Heme oxygenase-like, multi-helical isoform 1	Theobroma cacao	XP_007030327.1
comp48011_c0_seq1	4	0	17	96	17	3.94	0	WRKY transcription factor 14-1	Dimocarpus longan	AEO31477.1
comp42365_c0_seq1	3	0	12	83	22	3.96	0.01	Properoxidase	Picea abies	CAL25300.1
comp41730_c0_seq1	3	0	13	81	18	3.99	0.01	Adenylate kinase isoenzyme	Medicago truncatula	XP_003617100.1
comp55326_c0_seq4	1	0	5	25	14	4	0.03	F-box/LRR-repeat 3 -like protein	Gossypium arboreum	KHG22457.1
comp35564_c0_seq1	2	0	4	82	12	4.01	0.05	Pre-mRNA cleavage complex II protein family isoform 1	Theobroma cacao	XP_007010520.1
comp53805_c0_seq1	1	0	6	31	10	4.09	0.02	Biotin/lipoate A/B protein ligase family protein	Arabidopsis thaliana	NP_189543.2
comp55489_c0_seq4	1	0	11	21	9	4.09	0.02	Pentatricopeptide repeat (PPR) superfamily protein	Theobroma cacao	XP_007043514.1
comp55660_c0_seq1	2	0	6	80	7	4.1	0.04	SWIM zinc finger family protein	Theobroma cacao	XP_007040728.1
comp51780_c0_seq2	1	0	5	33	14	4.18	0.02	Boron transporter	Ricinus communis	XP_002519293.1
comp48504_c0_seq1	0	2	9	93	8	4.21	0.04	Subtilisin-like protease	Glycine soja	KHN12975.1
comp50903_c0_seq3	1	0	5	46	8	4.24	0.02	Splicing factor, arginine/ serine-rich 12	Zea mays	ACG33547.1
comp51704_c0_seq1	2	0	6	84	13	4.32	0.01	NAC domain-containing protein	Glycine soja	KHN03216.1
comp55152_c0_seq2	1	0	12	34	13	4.51	0.01	Isoamylase 2	Morus notabilis	XP_010090367.1
comp47615_c0_seq1	1	0	3	56	15	4.59	0.03	Cornifelin	Medicago truncatula	XP_003629262.1
comp43387_c0_seq3	1	0	2	66	10	4.61	0.04	Fibrillin 8	Coffea canephora	ABD39695.1
comp55616_c0_seq1	1	0	10	45	17	4.68	0.01	LRR receptor-like serine/ threonine-protein kinase	Theobroma cacao	XP_007029832.1
comp43106_c0_seq1	0	2	46	33	27	4.72	0.01	Leucine-rich repeat family protein	Populus trichocarpa	XP_002314568.2
comp42365_c0_seq2	3	2	42	271	33	4.76	0.01	Properoxidase	Picea abies	CAL25300.1
comp18457_c0_seq1	1	0	6	86	3	4.89	0.02	Uninformative		
comp55645_c0_seq1	2	0	19	113	22	4.89	0	Alpha 1,3 fucosyltransferase	Populus tremula × Populus alba	CAI70373.1
comp30617_c0_seq1	0	2	7	156	40	5.02	0.02	PLATZ transcription factor family protein isoform 2	Theobroma cacao	XP_007018634.1

Reference sequence	Sm3	Sm4	Sm5	Sm6	Sm7	logFC	PValue_ fdr	Gene annotation	Organism	Accession No.
comp53594_c0_seq1	1	0	4	96	9	5.05	0.02	Nucleotide-diphospho- sugar transferases superfamily protein	Theobroma cacao	XP_007029705.1
comp54467_c0_seq3	1	0	7	118	9	5.23	0.02	Exosome complex exonuclease RRP46 like	Glycine soja	KHM99392.1
comp20002_c0_seq1	0	0	5	22	6	5.3	0.05	Protein lifeguard 4	Arabidopsis thaliana	NP_171806.1
comp52704_c0_seq1	0	0	7	18	7	5.36	0.04	Pentatricopeptide repeat- containing protein	Ricinus communis	XP_002532091.1
comp51350_c0_seq1	0	0	6	19	10	5.46	0.04	Subtilisin-like protein	Picea abies	BAA13135.1
comp55244_c0_seq5	0	0	4	27	8	5.5	0.04	LRR receptor-like serine/ threonine-protein kinase FLS2	Triticum urartu	EMS54167.1
comp50151_c0_seq1	0	0	6	26	7	5.51	0.03	Protein FAM91A1	Gossypium arboreum	KHG03579.1
comp53367_c0_seq2	0	0	11	19	4	5.56	0.05	TPA: putative WAK receptor-like protein kinase family protein	Zea mays	DAA38848.1
comp18781_c0_seq1	0	0	12	20	6	5.66	0.02	F-box family protein	Populus trichocarpa	XP_002315636.1
comp41403_c0_seq1	0	0	8	37	4	5.77	0.03	Condensin-2 complex subunit D3 isoform 3	Theobroma cacao	XP_007035610.1
comp50394_c0_seq2	0	0	10	24	9	5.79	0.02	Circadian clock coupling factor family protein	Populus trichocarpa	XP_002306041.1
comp38917_c0_seq1	0	0	6	30	11	5.81	0.02	Coatomer subunit beta	Medicago truncatula	KEH28616.1
comp42062_c0_seq1	0	0	6	37	7	5.84	0.03	Serine-threonine protein kinase, plant-type	Ricinus communis	XP_002526889.1
comp55102_c0_seq1	0	0	12	31	2	5.85	0.03	Putative TIR-NBS-LRR protein	Pinus monticola	ADW94527.1
comp48926_c0_seq1	0	0	8	35	7	5.9	0.02	Zinc finger protein 4	Theobroma cacao	XP_007032204.1
comp42562_c0_seq1	0	0	13	18	16	5.9	0.05	Plant-specific domain TIGR01615 family protein	Zea mays	NP_001147221.1
comp49784_c0_seq1	0	0	13	32	3	5.94	0.02	Uninformative		
comp20321_c0_seq2	0	0	9	46	2	6	0.03	BRCA1-A complex subunit Abraxas	Gossypium arboreum	KHG22147.1
comp50442_c0_seq1	0	0	10	34	4	6	0.01	U-box domain-containing protein 4	Morus notabilis	XP_010110625.1
comp41706_c0_seq1	0	0	5	59	2	6.06	0.05	Plastid RNA polymerase sigma factor X	Marchantia polymorpha	BAM95333.1
comp470497_c0_seq1	0	1	9	217	18	6.1	0	Patatin-T5	Aegilops tauschii	EMT08201.1
comp54342_c0_seq1	0	0	9	47	6	6.11	0.01	long cell-linked locus protein	Zea mays	NP_001147138.1
comp53191_c0_seq1	0	0	6	50	8	6.15	0.02	Putative leucine-rich repeat receptor-like protein kinase family protein	Zea mays	AFW83643.1
comp41173_c0_seq1	0	0	2	52	17	6.19	0.04	Subtilase family protein	Theobroma cacao	XP_007024651.1
comp55364_c0_seq1	0	0	2	71	6	6.22	0.05	ProlinetRNA ligase	Gossypium arboreum	KHG24304.1
comp52104_c0_seq1	0	0	5	70	7	6.39	0.02	Aspartic proteinase Asp1 precursor	Ricinus communis	XP_002514831.1
comp35394_c0_seq1	0	0	8	74	4	6.48	0.02	DIS3-like exonuclease 1	Bos taurus	NP_001071624.1
comp51856_c0_seq1	0	0	1	72	16	6.53	0.02	Transmembrane protein 8B	Glycine soja	KHN26950.1
comp54808_c0_seq4	0	0	5	83	11	6.58	0.01	Putative TIR-NBS-LRR protein	Pinus monticola	ADW94527.1

Reference sequence	Sm3	Sm4	Sm5	Sm6	Sm7	logFC	PValue_	Gene annotation	Organism	Accession No.
							lar			
comp41304_c1_seq1	0	0	11	78	2	6.6	0.01	MFS transporter	Medicago truncatula	AES74091.2
comp41406_c0_seq1	0	0	13	71	12	6.63	0	Class III HD-Zip protein HDZ31	Pinus taeda	ABG73245.1
comp54020_c0_seq9	0	0	6	81	11	6.73	0	Aspartic proteinase nepenthesin-1	Morus notabilis	XP_010095993.1
comp56560_c0_seq1	0	0	11	102	9	6.8	0.01	Anthocyanidin reductase	Ginkgo biloba	AAU95082.1
comp45074_c0_seq1	0	0	4	118	7	6.84	0.02	Catechol-O- methyltransferase	Xenopus laevis	NP_001090344.1
comp45070_c0_seq1	0	0	2	112	11	6.85	0.02	Wound-induced protein 1-like protein	Phaseolus vulgaris	AGV54254.1
comp50246_c0_seq1	0	0	30	36	22	6.9	0	Leucine-rich receptor- like protein kinase family protein	Theobroma cacao	XP_007018364.1
comp39355_c0_seq1	0	0	31	84	16	7.32	0	50S ribosomal protein L3	Listeria ivanovii	WP_014093814.1
comp57238 c0 seq1	0	0	19	169	12	7.52	0	Anthocyanidin reductase	Ginkeo biloba	AAU95082.1

Appendix 2. The center of the up regulated gene network. Black nodes are genes from imported list, grey nodes are genes added by the Cytoscape 3.2.1 program. Genes highlighted in yellow are involved in immune responses.

Appendix 3. The center of the down regulated gene network. Black nodes are genes from imported list, grey nodes are genes added by the Cytoscape 3.2.1 program. Genes highlighted in yellow are coding proteins associated with the chloroplast thylakoid membrane.