Faculty of Biology, University of Latvia | ||||||
Hard copy: ISSN 1691–8088
On-line: ISSN 2255–9582 Environ Exp Biol (2017) 15: 233–238
|
||||||
About the Journal | Retractions | Open Access | Author Guidlines | Current Issue | Archive |
Environmental and Experimental Biology |
Environ Exp Biol (2017) 15: 233–238 |
The purpose of this research was to estimate the Zn2+ biosorption by biomass of Humicola phialophoroides fungus isolated from creek sediments in a zinc mine area in Thailand. The Langmuir isotherm model gave a better fit for the result data more than Freundlich, Temkin and Dubinin-Radushkevich isotherm models. Zn2+ removal ability in all H. phialophoroides biomass types as increasing Zn2+ concentration had the same pattern, but biomass pretreated by NaOH showed better Zn2+ removal ability than viable biomass, non-viable biomass, and HNO3 pretreated biomass. Maximum Zn2+ biosorption of biomass pretreated with NaOH took place at initial solution at pH 8 after 150 min. In addition, Zn2+ was well adsorped by NaOH pretreated biomass at temperature higher than 70°C, while desorption experiments indicated that the desorption efficiency with 0.1 M HNO3 solution reached 92.31%.