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Abstract

An experiment was carried out to study the anther dimorphism and meiotic behavior of chromosomes in different morphs of anthers in 
Crotolaria spectabilis. Anthers exhibit dimorphism with respect of their shape, size, surface ornamentation, dehiscence time, pollen size, 
pollen sterility, pollen germination and meiotic behavior of chromosomes. Meiotic indices, percentage share of different meiotic stages, 
chiasma frequency per pollen mother cell, chiasma frequency per chromosome, and percentage share of different meiotic anomalies 
varied with type of anther.  
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Introduction

Angiosperms display unsurpassed diversity in the 
morphology of reproductive structures, predominantly the 
stamens. Variation in stamen traits is evident among allied 
species, between plants, within populations, and also within 
and between flowers produced by an individual plant 
(Darwin 1877; Barrett 2002). Among the different types of 
stamen variation, intra flower polymorphism is a relatively 
uncommon but taxonomically widespread phenomenon 
(Marin et al. 2010). 

Heteranthery/anther dimorphism, particular form of 
the foresaid polymorphism, involves the presence of more 
than one discrete morphs/forms of stamen within the same 
flower with divergent functions (Vallejo-Marin et al. 2009; 
Barrett et al. 2010). It occurs in diverse taxonomic groups, 
and has most likely evolved on numerous independent 
occasions during the evolution of angiosperms (Barrett et 
al. 2010). 

Correlations between form and function have been 
demonstrated in many instances including changes in 
pollinator fauna in closely related species with different 
floral characteristics  such as aquilegia (Whittall et al. 
2007), mimulus (Bradshaw et al. 1998), penstemon (Wilson 
et al. 2006), stylidium (Armbruster et al. 1994), visitation 
by specialised pollinators and evolutionary shifts from 
cross- to self-fertilisation. Besides these, it is also associated 
with absence of floral nectarines (Vallejo-Marin et al. 
2009), buzz-pollination (Buchmann 1983), enantiostyly 
(Jesson, Barrett 2003), presence of staminode and aspects 
of perianth symmetry, floral orientation (Graham, Barrett 
1995) and convergent floral syndrome. Although globally 

numerous efforts are being made by researchers for 
understanding of evolution and different dimensions of 
heteranthery, untill now numerous lacunae are available. 
Among these lacunae, unavailability of proper information 
regarding “anther dimorphism and associated meiotic 
behaviour of chromosome” is an important one. Hence, 
male gametogenesis related to the anthers, and gametes 
determines the faith of progeny in sexually reproducing 
plants  so there is also an urgent need for the exploration of 
this aspect of heteranthery. 

Crotalaria L. belongs to the tribe Crotalarieae, having 
anther dimorphism, comprising around 600 herbaceous 
and shrub species distributed in the tropics and subtropics 
(Polhill 1982). In India, this genus is represented by 81 
species of which 27 are endemic and 15 species are listed 
in red data book of India (Nyer, Sastry 1987). Crotolaria 
spectabilis Roth, a native to the Indo-Malaysian, is a well 
known and widely distributed species comprising of two 
whorls of stamens (5 + 5) with differential growth and 
dimorphic anthers. This species grown in western countries 
as a fodder plant, green manure, as its root nodules fix 
atmospheric nitrogen. 

In India, extracts of C. spectabilis are used in the 
treatment of impetigo, scabies, and intestinal worms 
(http://eol.org/pages/694556/overview). Numerous efforts 
were made to understand the role of anther dimorphism in 
pollination and reproductive biology of the foresaid taxon 
but anther dimorphism and associated meiotic behaviour 
of chromosome remains also untouched in this taxon 
like other taxa. Therefore, the aim of the present study 
was to analyse the possible role of anther dimorphism in 
reproductive biology of C. spectabilis. 
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Materials and methods

For the study of reductional division, floral buds of C. 
spectabilis were collected from its population growing in 
Aacharya Jagdish Chandra Bose Indian Botanic Garden, 
Howrah and fixed in Carnoys fluid between 5:45 and 
6:10 (December, 2015) for 24 h and further stored in 
100% ethanol. Large and small sized anthers excised 
from suitable floral buds, were squashed separately in 2% 
acetocarmine and considered meiotic parameters were 
recorded. Floral buds approaching maturity were used for 
the study of anther and pollen characteristics. Stainability 
of pollen grain with acetocarmine was used as an index 
for determining pollen sterility. The pollen germination 
percentage was evaluated using the sucrose solution (30%) 
method. The Meiotic Index, MI (%) = 100 (No. of normal 
tetrads/total meiocytes), was calculated from more than 
1200 meiocytes from each type of anther. The data on all 
considered parameters were recorded in replicates and then 
statistically analysed using SPSS software. For scanning 
electron microscopic (SEM) study, anthers and pollen grains 
were properly dried and mounted directly on adhesive tape. 
Subsequently, gold coating was made to produce material 
for SEM study. Observations were made with a QUANTO 
200, FEI 500 Scanning Electron Microscope and scanning 
electron micrographs were taken.  

Results and discussion

Anthers of C. spectabilis exhibit dimorphism with respect 
of their shape, size, surface ornamentation, dehiscence time, 
pollen size, pollen sterility and pollen germination (Table 
1). Large elongated anthers contained ridged granular and 
small rounded anthers contained wormiform and spiral 
ridged surface ornamentation (Fig. 1 A and B, F and G). 
Large anthers dehisced at early hours of the day (< 8:30) and 
small anthers at late hours (> 10:45). This confers staggered 
presentation (asynchronous) of pollen in C. spectabilis. 
Staggered pollen presentation is either achieved by 
altering time of anthesis within an inflorescence or anther 
dehiscence within a flower coupled with gradual releasing 
of pollen grain from anther pore (Harder, Thomson 1989). 
According to Sarala et al. (1999) it reduces the risk of pollen 
removal by an individual pollinator during a single visit 
and favours dispersal of pollen grains to more pollinators 
and subsequently to several poles apart stigmas. In the 
Harder and Thomson (1989) model, synchronous pollen 
presentation was linked with low pollinator visit rates and 
staggered with high pollinator visitation rate. 

Pollen grains of both types of anthers were tricolporate, 
prolate and semi-angular (Fig. 1 C and D, I and J). The tectum 
was microperforate and the apocolpium ornamentation 
was more or less the same as the mesocolpium area (Fig. 
1 E and J). Exine stratification was almost identical. Our 
findings with respect to surface appearance of pollen grains 

are consistent with the findings of Lin and Huang (1999) on 
Crotalaria species and contrary with the findings of Pacini 
and Bellani (1986) and Fujiki et al. (1997) in Lagerstroemia 
indica, and Commelina communis, respectively where 
dimorphic or polymorphic pollen from different types of 
anthers was observed. 

Pollen mother cellc (PMC) of both types of anthers 
shared almost equal dimensions and revealed eight ring 
bivalents (2n = 16) at dikinesis and metaphase-I, which was 
in agreement with findings of earlier workers (Atchison 
1951; Datta, Mondal 1969; Boulter et al. 1970; Verma et al. 
1980; Bairgajan, Patnaik 1989; Almada et al. 2006) (Table 
1, Fig. 2 A to C). Meiotic indices and percentage share of 
different meiotic stages varied with type of anthers (Table 
2), although belonged to same floral bud. Higher meiotic 
indices for elongated anther (16.71) and lower for rounded 
anther (9.02) are probably responsible for variation in size 
of pollen sac and thus per unit production of pollen grains.  

Anther type dependent chiasma frequency per PMC 
and per chromosome was observed and higher amplitude 
was noted for elongated anther (Table 2). This asynchrony 
in the behavior of chromosome attributes may be due to 
presence of two separate genetic controls for the same 
(Koul et al. 2012). Although variation was found in chiasm 
frequency of both type of anthers, in both cases it was 
adequately high. It has been suggested that excess of stability 
caused by selfing (as in our experimental plant) should be 
compensated by higher rate of recombination whereas 
in out crossing species the flexibility is achieved through 
the repeated reshuffling of genetic material following the 
mating with unrelated individuals (Zarchi et al. 1972). 

In both type of anthers in trace proportions meiotic 
anomalies were also observed and their frequency was 
found higher in small anther (Table 2). Univalents, stray, 
precautious movement, bridge and micronuclei were 
recorded as most common anomalies and the former 

Table 1. Anther and pollen characteristics of Crotolaria spectabilis. 
ns, p > 0.05; *, p < 0.05; **, p < 0.01

Trait Large anther Small anther
Anther length (mm) 03.20 ± 0.12 0.092 ± 0.001**
Anther  width (mm) 01.50 ± 0.10 0.093 ± 0.001**
PMC length (µm) 21.09 ± 1.11 19.99 ± 0.74*
PMC width (µm) 17.76 ± 1.11 17.76 ± 1.11ns
Pollen length (µm) 38.08 ± 2.07 34.00 ± 2.26*
Pollen width (µm) 28.11 ± 0.45 26.29 ± 0.78ns
Length of surface micro-
perforations of pollen 
grains (µm) 

0.36 ± 0.037 0.36 ± 0.03ns

Width of surface micro-
perforations of pollen 
grains (µm)

0.29 ± 0.02 0.25 ± 0.04*

Pollen sterility (%) 26.31 ± 0.78 28.02 ± 2.27*
Pollen germination (%) 54.87 ± 5.10 46.47 ± 6.07**
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Fig. 1. Scanning electron micrographs of large anther (A), surface view of large anther (B), pollen grain of large anther (C), polar view of 
pollen grain of large anther (D), surface view of pollen grain of large anther showing microperforated ornamentation (E), small anther 
(F), surface view of small anther (G), pollen grain of  small anther (H), polar view of pollen grain of small anther (I), surface view of 
pollen grain of small anther showing microperforated ornamentation (J) of Crotolaria spectabilis.
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Fig. 2. Meiotic stages in anthers of Crotolaria spectabilis. Prophase-I (8 bivalent 2n = 16) (A, B, C); anaphase-I (D, E); univalents (F); 
Lagard (G); stray (H); precautious movement (I); bridge (J); micronuclei (K).
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three showed higher amplitude in small anther (Fig. F to 
K). Formation of univalents is a result of asynapsis and 
desynapsis which are either removed or indiscriminately 

transmitted to progeny cells, resulting a numarically 
imbalanced gametes or aneuploids in the offspring (Cai et 
al. 2007). In addition, univalents may undergo misdivision, 
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such as transverse division, to produce telocentric, 
acrocentric and isochromosomes (Sears 1952; Friebe et al. 
2005). Univalents not only interfere with the completion of 
meiosis, but also survival of the individual through sexual 
propagation is greatly impaired (Soost 1951). The presence 
of such univalent chromosomes resulted in a decrease 
in chiasma frequency and in turn considerably lowers 
gametic fertility (Kumar et al. 2013). Detrimental effects of 
univalents on faith of meiosis and pollen fertility have also 
been documented by several workers (Maity, Datta 2009a; 
Maity, Datta 2009b; Datta et al. 2010; Goyal, Khan 2010). 
The occurrence of univalent chromosomes in diploid 
plants has been attributed to the hybrid constitution of the 
genome (Stebbins, Pun 1953; Leggett 1998; Kumar et al. 
2012).

Precocious chromosome migration to the poles may 
have resulted from spindle dysfunction or precocious 
chiasma terminalisation at diakinesis or metaphase-I 
(Kumar, Rai 2007). Stray seems to be possibly caused 
by spindle dysfunction and clumping of chromosomes 
(Bhat et al. 2007). The formation of anaphasic bridges 
might be due to the failure of chiasmata in a bivalent to 
terminalise and the chromosome gets stretched between 
the poles (Saylor, Smith 1966), due to unequal exchange or 
dicentric chromosomes and paracentric inversions (Sinha, 
Godward 1972) etc. Observed micronuclei, tiny extra-
nuclear bodies, may be due to the association of fragments 

and lagging chromosomes, failed to reach the poles and 
becoming included in the daughter nuclei (Sedelnikova et 
al. 2007; Fenech et al. 2011; Luzhna et al. 2013). Acentric 
chromatid/chromosome fragments usually originate after 
extensive DNA damage such as DNA double-strand breaks,  
which if misrepaired result in asymmetrical chromosome 
rearrangements and exchanges. Whole chromatids or 
chromosomes in micronuclei are formed due to deficiencies 
in chromosome segregation during anaphase, usually 
caused by mitotic spindle failure, kinetochore damage, 
centromeric DNA hypomethylation, and defects in the cell 
cycle control system (Mateuca et al. 2006).

High pollen sterlity and low pollen viability could be 
associated to the observed meiotic irregularities, since they 
have potential for chromosome number alteration, or to 
post-meiotic events. Possibly, many microspores having 
an irregular chromosome number became abortive. A 
number of studies have shown that inbreeding depression 
can contribute to pollen stertility (Krebs, Hancock 1990; 
Willis 1993; Husband, Schemske 1996; Goodwillie 2000). 
In addition, there are a number of non-genetic causes of 
pollen un-viability, including pollen age and physical 
factors such as temperature and humidity (Kelly et al. 
2002). Still, considering that these species produce large 
amounts of seeds, both in natural populations and under 
cultivation, such low viability must be compensated by the 
large number of pollen grains.

In conclusion, findings of the present investigation 
indicate that heteroanthery, an evolutionary important 
phenomenon, is not only limited to morphological 
variation of anthers but involves cytogenetic level variation 
in different morphs of anthers. As any cytogenetical 
change during micro-sporogenesis process determines 
faith of progeny of any plant, hence, there is need for more 
concerted efforts to explore the developmental aspect of 
anther dimorphism. That will definitely praise new insight 
to understand evolutionary aspects of economically 
important genera like Crotalaria. 
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